Algebraic Sub-structuring (Domain Decomposition) for Large-scale Electromagnetic Application

Weiguo Gao Chao Yang Sherry Li
Lawrence Berkeley National Laboratory

Zhaojun Bai
University of California, Davis

Joint Work with Rich Lee, Kwok Ko (SLAC)
Outline

- Algebraic Multi-Level Sub-structuring (AMLS)
- Why does it work?
- Implementation issues
- Numerical results and performance
 - Focus on electromagnetic application
 - Compare with shift-and-invert Lanczos (SIL)
 - time, memory, accuracy

DOE SciDAC Projects

- Terascale Optimal PDE Simulations (David Keyes)
- Advanced Computing for 21st Century Accelerator Science and Technology (Kwok Ko, Rob Ryne)
Background

Generalized sparse eigenvalue problem: \(K x = \lambda M x \)
- \(K \) symmetric, \(M \) SPD
- Need large number of small nonzero eigenvalues

Sub-structuring dates back to the 1960’s (CMS)
- Plenty of engineering literature
- AMLS has recently been used successfully in structural engineering (Bennighof, Kaplan, Lehoucq)
 - Compute vibration modes
 - Perform frequency response analysis

Open questions remain as a general-purpose solver
- Accuracy
- Performance
Can we extend the success story from structural engineering to electromagnetic applications (accelerator cavity design)? Important for the next generation linear accelerator design (SLAC)

Curl-curl formulation of Maxwell’s equation

\[\nabla \times (\nabla \times E) - \lambda E = 0 \quad \text{in } \Omega \]
\[\quad n \times E = 0 \quad \text{on } \Gamma_E \]
\[\quad n \times (\nabla \times E) = 0 \quad \text{on } \Gamma_E \]
Challenges of Eigenproblems in Accelerator Design

- Large matrix size for realistic structures
 - Tens of millions to hundreds of millions

- Small eigenvalues (tightly-clustered) out of a large-eigenvalue dominated eigenspectrum
 - Many small nonzero eigenvalues desired

- Large null space in the stiffness matrix
 - Up to a quarter of the dimension

- Requires high accuracy for eigenpairs
To Answer The Question...

- Look at the description of the algorithm to see if it is applicable
- Analyze approximation properties of the algorithm (error estimate)
- Examine the complexity of the implementation
Single Level Substructuring

1. Partitioning & reordering for \((K, M)\)

\[
\begin{pmatrix}
K_{11} & \hat{K} \\
K_{22} & K_{33}
\end{pmatrix}
\begin{pmatrix}
M_{11} \\
M_{22} & M_{33}
\end{pmatrix}
\]

2. Block Gaussian elimination (congruence transformation)

\[
\hat{K} = L^{-1}KL^{-T}
\]

\[
\hat{M} = L^{-1}ML^{-T}
\]
3. Sub-structure calculation for a subset of the modes (mode selection)

\[K_{ii}v^{(i)} = \mu^{(i)}M_{ii}v^{(i)}, \quad i = 1, 2 \]
\[\hat{K}_{33}v^{(3)} = \mu^{(3)}\hat{M}_{33}v^{(3)} \]

3. Subspace assembling

\[S = \begin{pmatrix} S_1 \\ S_2 \\ S_3 \end{pmatrix} \]
\[S_i = \begin{pmatrix} v_1^{(i)} & v_2^{(i)} & \cdots & v_{k_i}^{(i)} \end{pmatrix}, \quad i = 1, 2, 3 \]
Single Level (cont)

5. Projection (Rayleigh-Ritz)

\[
\left(S^T \hat{K} S \right) q = \theta \left(S^T \hat{M} S \right) q
\]

6. Unravel

\[
D = \text{diag}(\theta_1, \theta_2, \cdots, \theta_m)
\]

\[
Z = L^{-T} SQ_m
\]

\[
(Q_m = (q_1, q_2, \cdots, q_m), \, \hat{K} = L^{-1} KL^{-T})
\]
Algebraic Analysis

\[\hat{x} = \begin{pmatrix} V_1 & V_2 & V_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \]

Canonical form

\[\Lambda_1 \quad \Lambda_2 \quad \Lambda_3 \]

\[I \quad I \quad I \]

\[\Lambda_1 \quad \Lambda_2 \quad \Lambda_3 \]

\[\begin{pmatrix} \hat{y} \\ \hat{V} \end{pmatrix} \approx \begin{pmatrix} S_1 \\ S_2 \\ S_3 \end{pmatrix} = u \]
Example 1 (BCS09)

y_1 - plot
Example 2 (Accelerator Model)

y_1 - plot

y_2 - plot
Error Bound

\[\theta_1 - \lambda_1 \leq (\lambda_n - \lambda_1) h^2 \]

\[\sin \angle_{\hat{M}} (u_1, \hat{x}_1) \leq \sqrt{\frac{\lambda_n - \lambda_1}{\lambda_2 - \lambda_1}} h \]

- \(h \) measures the size of the “truncated” components of \(Y \)

Related work

- Bourquin et al. (CMS analysis)
- Bekas & Saad (Spectral Schur Complement)
- Elssel & Voss (minmax theory for rational eigenvalue problem)
Multilevel Algorithm (AMLS)

1. Matrix partitioning and reordering using nested dissection
2. Block elimination and congruence transformation
3. Mode selection for sub-structures and separators
4. Subspace assembling
5. Projection calculation
6. Eigenvalues of the projected problem
Implementation

Major Operations:
- Transformations and projection
 - Steps 2-5 can be interleaved
- Eigenpairs of the projected problem

Cost:
- Flops: more than a single sparse Cholesky factorization
- Storage: Block Cholesky factor + Projected matrix + some other stuff
- NO Triangular solves, NO orthogonalization
Task Dependency (Greedy Algorithm)
Bottom Level

- Eliminator: L_{i1}
- Modes: $K_{11}V_1 = M_{11}V_1\Lambda_1$
- Eliminate K: one sided update
- Congruence transformation on M: two sided update
- Store half-projected $\hat{M}_{i,1}$ (dashed box)
Higher Level

- Additional updates of previously “half-projected” columns (dashed box)
- Completion of some blocks (red box)
Example: Accelerator Model

- A 6-cell DDS structure
- $N = 65K$
- $NNZ = 1455772$
- $nev = 100$
- All the coupling modes are selected
- SIL took 407 sec (ARPACK + sparse LDLT)

![Graph showing performance metrics over different levels of n modes (100, 50, 25, 12, 6).]
When Is AMLS Faster?

- Many eigenvalues are wanted (up to ~8% in this case)
- SIL requires multiple shifts (factorizations)
Memory Profile

![Graph showing memory profile with lines and data points.]

- Save up to 50% memory with 13% re-compute time
- SIL needs ~308 Mbytes memory
Accuracy Compared with SIL

Levels=5, increasing nmodes of sub-structures
Concluding Remarks

- EM in accelerator simulation is a truly challenging engineering problem
- Better understanding of accuracy
- AMLS software to be released
 - General-purpose, memory efficient
 - Application-tuned: null space handling
- Performance advantage shows up when:
 - The problem is large enough
 - A large number of eigenpairs are needed
- Many tuning parameters
 - Number of levels, number of modes, tolerances