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Abstract. We developed a Performance Modeling Tools (P&LS) library to en-
able simulation-based performance modeling for parafiatse linear algebra al-
gorithms. The library includes micro-benchmarks for aalfing the system’s pa-
rameters, functions for collecting and retrieving perfance data, and a cache sim-
ulator for modeling the detailed memory system activitidsing these tools, we
have built simulation modules to model and predict perfaroeaof different vari-
ants of parallel sparse LU and Cholesky factorization étlgars. We validated the
simulated results with the existing implementation in Sufpk DIST, and showed
that our performance prediction errors are only 6.1% an#é6aéth 64 processors
IBM power5 and Cray XT4, respectively. More importantly, have successfully
used this simulation framework to forecast the performafadifferent algorithm
choices, and helped prototyping new algorithm implemésriat
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1. Introduction

Developing accurate performance models for parallel gplimear algebra algorithms
becomes increasingly important because the design spaaealfelization strategies is
large and implementing each strategy is labor-intensigeraguires significant amount
of expertise. Accurate performance modeling and predictib different algorithms
could narrow down the design choices and point to the moshising algorithms to
implement. It is intractable to derive closed form analgticodels for most sparse ma-
trix algorithms because performance of such algorithmsddg on both the underly-
ing computer system and the input characteristics. In mamgliel sparse matrix al-
gorithms, computations often alternate between “memaya” phases and “CPU-
bound” phases [3]. In addition, the sparsity and the norz&rcations determine the
amount and the granularity of communication as well as loattidution. This also
presents a significant challenge for accurate performarmckelimg. On the other hand,
simulation-based performance modefter the potential for taking into account details
of the input and reproduce the relevant system behaviorsphjgose a methodology
for creating performance models where the computationgsesented by a sequence
of interleaved memory operations, the calls to the BLASirms, and the inter-process
communications. Our model simulates the steps of the dlgoras driven by the input



and charges for the cost of memory accesses, local aritbigadtulations, and commu-
nications.

Our simulation framework consists of two components. The¢ iomponentis a low
level library of Performance Modeling Tools, PMDLS, which is based on our previ-
ous work in modeling parallel sparse LU factorization [LheTPMTooLs library can
be generally useful for modeling any parallel linear algedligorithms, dense or sparse.
With slight modification, PMDoLs can also be used to study performance of larger ap-
plication codes. The second componentis applicationispstnulation module, which
depends on the specific algorithm to be modeled and whichuttsrBM TooLSsto obtain
the running times of the low level operations. In the follog/sections, we will describe
each component in more detail, and show the simulationtsesith validations.

Our objective is twofold: 1) we would like to predict perfoamce of existing imple-
mentations on different architectures, including hyptitta¢ machines that do not exist
yet. To this end, we build the application-specific simaatmodule by mimicking com-
putations and communications in the actual implementatidnoding software/hardware
interactions. 2) We would like to use this simulation franoekvto help design and pro-
totype new algorithms, and eliminate bad algorithm choi@éss is an even more valu-
able and novel use of this predictive framework, which digtishes our work from the
others in the area of performance evaluation and benchnmarki

2. Performance Modeling Tools

PMTooLsis a collection of tools intended to calibrate performanihe machine’s in-
dividual components. It contains the micro-benchmarlesdidta structures and manage-
ment routines for storing and retrieving the data colletgthe micro-benchmarks, and
a cache simulator to represent the memory hierarchy atmenttach micro-benchmark
is run off-line and measures the times taken by a basic aparauch as the execution
of a BLAS routine, over a parameter space of interest and #te are collected into
the tables once and for all. These data represent the cagidos of the relevant opera-
tions at the simulation time. Since the configuration spacebe extremely large, some
configurations are omitted. The omitted values are latémestd using various inter-
polation or curve-fitting algorithms [5,12]. Currently, PoLS contains the following
three models.

1) Memory model. PMTooLs provides a cache simulator capable of combining sev-
eral cache instances. Each instance is parameterizeddaugdo the cache character-
istics (e.g. capacity and associativity) of the targetesystThus, we can compose an
entire memory hierarchy simulator that also includes th83.LThe simulator has two
functions: to maintain the state of the memory hierarchgulghout a simulation and to
estimate the cost of each operation. We designed a memorg4oénchmark to mea-
sure the latency and bandwidth of each level of the cachelat@ecies are measured by
timing the updates at various memory locations. Each levéié memory hierarchy is
measured in isolation by choosing the locations of the wgsdiata controlled operational
regime, so that each access hits the desired cache levelatEney for this level is de-
rived accurately [9]. The bandwidth is measured by timingusstial memory accesses.
The measured bandwidth is applicable as long as the numb=onsiecutive memory
locations transferred is greater than a threshold thajerghardware prefetching.



2) Model of linear algebra kernels. Most high level linear algebra algorithms can be
expressed as a number of calls to the BLAS routines, whichigeeca nice abstract in-
terface between the high level algorithms and the low levighmetic engine. In PM-
TooLs, we use micro-benchmarks to measure performance of the Blde&ls of in-
terest, with varying matrix/vector dimensions. The tingreye measured off-line and
stored in the lookup tables, and will be retrieved latergithe application’s simulation.
Since the parameters space can be very large, timing easkbf@opoint is both time-
consuming and requires large tables. Instead, we benchhmarkutines of all the small
dimensions which are sensitive to timings, but only for asgtlof the other larger dimen-
sions. During simulation, the probing function first seaslkhe tables for the given di-
mensions; if such dimension is not found, an estimate isiodtby linear interpolation
using the closest times available in the table (or extrajuolaf the dimensions are out-
side the bounds). We note that this simple interpolatidnémolation can be improved
by a more sophisticated scheme to improve prediction acglitZ].

3) Communication model. The communication model is based on point-to-point mes-
sage passing. The other communication primitives suchlistise communication are
modeled as a sequence of point-to-point transfers. We petfte measurement of vary-
ing message sizes off-line, store the timings in a lookufetadnd retrieve the timings
during the actual simulation. The cost of a transfer is messusing a ping-pong micro-
benchmark, and again, the probing function either congludt$ookup table for the cost
of a given message size, or does interpolation for the messiags not directly mea-
sured. Our table includes the ping-pong timings betweenpreoessors, as well as the
timings with simultaneous ping-pongs among all pairs ofcpssors. We also support
the SMP or multicore CMP nodes in that the micro-benchmarkimsto measure both
intra-node and inter-node communication. The probingtioncan take the information
about the number of nodes and the two processes involved.eamah the appropriate
measured cost.

3. Application-specific Simulation Modules

To demonstrate the effectiveness of PMJLsfor achieving our first objective, we con-
sider an existing implementation of sparse LU factorizatioSuperLU_DIST [6]. The
LU factorization algorithm uses supernodal block struetiarthe kernel. The factored
matrices L and U are stored in compressed format and diggdowith block cyclic lay-
out on a 2D processor grid. Each unit of work (or a vertex indataflow graph) is de-
fined as a block column/row factorization in a right-lookiiaghion, and the factoriza-
tion proceeds sequentially along the outeidimension. A single level of pipelining (i.e.
one step look-ahead) was implemented by hand acroggthend(k + 1)st iterations
to shorten the critical path. Figure 1 illustrates such alltistribution. The highlighted
block column and row correspond to thh step of outer factorization.

We developed a simulation module which is a close mimic ofaletorization algo-
rithm except that we do not perform the actual operationsybly advance the simulated
runtime. This is done by charging the times for each BLAS fiamcand MPI function,
using the probing function provided by PMDLS. The memory system is also closely
simulated as if the algorithm is run on a real machine. Theuktion module first in-
stantiates the memory state for the cache simulator in B&LE. During simulation,
whenever the algorithm involves a memory access, the madulsults the cache simu-
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Figure 1. Sparse LU block cyclic distribution.

Algorithm 1 SuperLU_DIST: simulated update of théh block row ofU'.

1: forall p € Processors \UBLOCKS_OF_P(p,k) # @ do
2:  time[p] = time[p] + memory_update(p, stack)

3. time[p] = time[p] + memory_read(p, index)

4: end for
5
6
7
8

: forall b e UBLOCK S(k) do
p — OWNER(b)
time[p] = time[p] + memory_read(p,b)

forall j € bdo
9: if columny is not emptythen
10: time[p] = time[p] + lookup(dtrsv, sizeof (7))
11: end if
12:  end for
13: end for

14: for all p € Processors \UBLOCKS_OF_P(p,k) # @ do
15:  time[p] = time[p] + memory_update(p, stack)
16: end for

lator to obtain the access time and to trigger an update tstéte of the memory. As an
illustration, Algorithm 1 shows the simulated procedurattborresponds to the update
of a block row ofU. The procedure shows how the cost of each simulated opeiiatio
collected. Memory access functions (e@.¢mory_update andmemory_read) take

a parametep to indicate the instance of the simulated memory systembélaings to
processop.

We validated the model on eight unsymmetric matrices sedefrtom the Univer-
sity of Florida Sparse Matrix Collection [2bbmat, ecl32, g7jac200, inv-extrusion,
mixing-tank, stomach, torsol, and twotoneWe used up to 64 processors with two dif-
ferent machines at NERSC, one is an IBM Powdragsi ) and another is a Cray XT4
with quad-core AMD Opteron nodekr(ankl i n). Figure 2 shows the percentage abso-
lute errors of the predicted times versus the actual timeth&oeight matrices (shown in
the legend). In most cases, our simulated time is accurditénwii5% error. The average
absolute prediction errors among all matrices and processtdigurations are only 6.1%
and 6.6% for the IBM Power5 and the Cray XT4, respectivelysTével of accuracy is
remarkable for such complicated sparse matrix calculation

In addition to analyzing performance of the existing impéaration, we have used
this simulation model to forecast the performance of défgralgorithm choices, and
successfully improved the parallel efficiency.
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Figure 2. Accuracy of the simulated factorization times comparedéoectual times. Each bar represents one
matrix.

1) Shape of the processor grid. For a fixed processor count, the shape of the 2D pro-
cessor grid can affect the factorization speed. We used odehto predict the optimal
shape of the processor grid with 16 processors. Figure 3stmactual running times
and the simulated times for the eight matrices. The modelabésto correctly sort the
grid shapes using the simulated execution times, and theepsor grid shap2 x 8 is

the best in most cases.

2) Latency-reducing panel factorization. The panel factorization at each step of the
outer loop usually lies on the critical path. The originaj@&ithm performs a series of
broadcasts for each rank-1 update. An alternative desitmuse asynchronous point-
to-point communication, reducing the latency cost. We hensimulation with different
strategies, and then chose the best simulated one to impteigs optimization led to
20-25% improvement for the entire factorization on 64 pssoes.

Evaluation of Processor Grid Shape (Bassi)

Time (sec)
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Figure 3. Choices of the shapes of the processor grid with 16 procesEach matrix has 10 bars, divided
into 2 groups of 5 each. The left group is from the actual rans, the right group is from simulation. For each
matrix, the two bars of the same color represent the sameshap

4. Prototyping New Factorization Algorithms by Simulation

We have been designing and prototyping parallel sparsesGkypfactorization using the
SuperLU_DIST code base. Cholesky factorization works yonreetric positive definite
matrices, which requires half of the operations and halthef tnemory compared to
LU factorization. That is, after factorization, the uppeamgular matrix is equal to the
transpose of the lower triangular matrix, and so the algoribnly needs to compute the
lower triangular matrix.



In a symmetric factorization, the computation of the bloows and the update of
the upper triangular part of the trailing submatrices arterequired. However, the block
rows are still needed for updating the lower triangular pRyt symmetry, these blocks
reside only in the symmetric block column. A simple adaptatf SuperLU_DIST's
sparse data layout and communication is as follows (see&itju At each step of the
outer factorization the block column @fis aggregated and replicated on the processors
that own the block column. Then, each of these processods $ka entire block column
along its processor row. Sending the entire block colummissthat all the processors
involved in the update of the trailing submatrix are proddeth all the data required.
Like the LU factorization in SuperLU_DIST, we implementesiagle level of pipelining
scheme for better overlapping communication with compartiednd shortening the crit-
ical path. The implementation in the SuperLU_DIST framéwisrstraightforward, but
the drawbacks are that it sends more data than necessamyposds synchronization of
the processors along each block column.

We built a simulation module to analyze performance of thigpathm. For our
experiments we used a suite of 8 matricesupes_sphere, boneS01, ship_001, smt,
bmw7st_1, hood, nd3k, and threajland ran on an IBM Power5, and a Cray XT4. Our
simulation predicts that collective communication beceraeperformance bottleneck
and seems to hinder scalability. In fact, it can be obserkiatidomparing the timings
of Cholesky factorization and LU factorization, when thergased communication cost
outweighs the reduction in computation time, there is ailmosspeedup and sometimes
there is even a slowdown. This effect is most noticeable fioslsmatrices and when
scaling up the number of processors, see Figure 4. Howeveome cases we observed
very large discrepancy between predicted and measuredihmee the actual running
time is unexpectedly high (e.g. on 64 processors the faetton is 3 times slower that
on 1 processor); we are currently investigating the cauebat appears to be a perfor-
mance bug in the Cholesky algorithm.

Speedup of Cholesky Factorization (Bassi) Speedup of Cholesky Factorization (Franklin)

O1 8 16 32 64 8 16 32 64
Processors Processors
(a) IBM Power5 (b) Cray XT4

Figure 4. Speedup achieved by Cholesky factorization relative to atidrization applied to the same prob-
lem. Each line represents one matrix.

An alternative parallelization is block-oriented in whittfe sparse factor is repre-
sented by blocks (in contrast to block column in SuperLU DI%ach block is sent to
only those processors that need it, and the communicatibbmetibe restricted along
each processor row. This eliminates the need for synchatiaiz of each column pro-
cessors but may involve transferring more messages of ensale. This was shown to
work reasonably well on earlier machines [8], but it is n@tazlon the newer machines
which have much faster processors relative to intercorspastd. Since a block-oriented
approach requires different ad-hoc data structures, wetpldevelop a new simulation
module in order to compare the two strategies before engagithe costly implemen-
tation.



5. Related Work

Performance modeling efforts range from developing sytithenchmarking suites for
measuring raw performance of the machines’ individual congmts to developing high
level tools and application-specific cost models for perfance prediction [11,4,10,12].

Our micro-benchmarking approaches to measuring the rawdats and bandwidths
of the memory and interconnect systems are based on theywédepted methodology
of Saavedra et al. [9]. By systematically accessing menagtions with varying range
and stride, it is possible to derive the latency, line sizé associativity of each cache
level. Similarly is done in STREAM [7] and MultiMAPS [10], Wi the difference that
our micro-benchmarks combine multiple tests in order toredte a larger set of param-
eters. Our MPI ping-pong benchmarking is similar to IMB [dlit we consciously per-
form the ping-pong tests with single pair and all pairs, ai agintra-node and inter-
node. This covers most scenarios of the point-to-point camications occurred in real
applications.

A major difference between our framework and many othersappin the way
how the application performance profile is collected. A dapapproach is trace-based,
such as [12], which captures the addresses of the prograimgdexecution, and feed
the trace to the memory simulator to derive runtime withed#it cache configurations.
The drawbacks of this approach are that it can only predidbopeance for the ex-
isting applications and analyze codes that are purely mg#nound. We chose to use
simulation-based approach at the application level mdirtause we would like to use
this framework for faster prototyping of new algorithmsaiidition to analyzing existing
implementations. Writing the simulation code with diffet@lgorithm choices is much
easier than implementing the actual algorithms (see Allgoril), since we can avoid
dealing with the details of the complicated sparse matrba d&ructures. Furthermore,
an important characteristic of sparse matrix factorizatityorithms is that they consist
of a mixture of memory-bound and CPU-bound phases, hencmathod simply based
on memory-bound characteristic would likely overestinratgime. That is why we de-
veloped a separate benchmark model for the BLAS kernelg;hwd@aptures most of the
CPU-bound phases. Thus, our combined memory simulator aAGBenchmarks can
predict performance of this workload mixture more accuyateur simulation frame-
work is also more flexible in that once we create an applicatiodule, the inputs (e.g.,
different sparse matrices) and the processor configusaéionmarguments of a simulation
run, whereas a trace-based method needs a re-run of the tedethre input changes.

Previously, Grigori et al. made a first attempt for develgpinrealistic simulation
model to study the sparse factorization algorithm implete@mn SuperLU_DIST [3].
Their framework is also simulation-based, containing megnsamulator, detailed mod-
els of BLAS kernels, and a communication bandwidth modeVésying message sizes.
The model has greatly improved the prediction accuracy,itbigt tailored for a spe-
cific algorithm-implementation and requires estimatiortha# instructions involved in
the BLAS routines. Therefore, it is very difficult to adaptdifferent algorithms and to
achieve our Goal 2).

6. Conclusions

Performance models based on simulations are very usefeN@ral cases: to enable rapid
prototyping of new algorithms, to evaluate systems desagid, to model performance



that heavily depends on complex characteristics of thetinfith PMTooLs we mod-
eled parallel sparse LU factorization and we observed &mithin 15% in most cases
and an average of less than 7% error across two differenit@ctires for up to 64 pro-
cessors. More importantly, the model proved to be usefubtorgoal of new algorithm
design.

Our results indicate that the approach is promising andpsgble in modeling dif-
ferent and perhaps more complex applications. While theeaet accuracy in the work
presented seemed sufficient for our goals, it exposed somlengsses of the framework,
namely the inaccuracy that might arise in presence of ctioterfo improve the robust-
ness of our framework we plan to model the effect of resoucoegention as it is be-
coming a crucial aspect of multi-core systems. To this endvillénvestigate two types
of contention: contention of memory resources, and coitteraff network resources.
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