
Performance Modeling Tools for Parallel
Sparse Linear Algebra Computations

Pietro Cicottia Xiaoye S. Lib and Scott B. Badena

a Department of Computer Science and Engineering Universityof California, San
Diego La Jolla, CA 92093-0404. {pcicotti,baden}@cse.ucsd.edu.

b Corresponding Author: Computational Research Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720. xsli@lbl.gov.

Abstract. We developed a Performance Modeling Tools (PMTOOLS) library to en-
able simulation-based performance modeling for parallel sparse linear algebra al-
gorithms. The library includes micro-benchmarks for calibrating the system’s pa-
rameters, functions for collecting and retrieving performance data, and a cache sim-
ulator for modeling the detailed memory system activities.Using these tools, we
have built simulation modules to model and predict performance of different vari-
ants of parallel sparse LU and Cholesky factorization algorithms. We validated the
simulated results with the existing implementation in SuperLU_DIST, and showed
that our performance prediction errors are only 6.1% and 6.6% with 64 processors
IBM power5 and Cray XT4, respectively. More importantly, wehave successfully
used this simulation framework to forecast the performanceof different algorithm
choices, and helped prototyping new algorithm implementations.

Keywords. Performance modeling, linear algebra, parallel sparse factorizations

1. Introduction

Developing accurate performance models for parallel sparse linear algebra algorithms
becomes increasingly important because the design space ofparallelization strategies is
large and implementing each strategy is labor-intensive and requires significant amount
of expertise. Accurate performance modeling and prediction of different algorithms
could narrow down the design choices and point to the most promising algorithms to
implement. It is intractable to derive closed form analytical models for most sparse ma-
trix algorithms because performance of such algorithms depends on both the underly-
ing computer system and the input characteristics. In many parallel sparse matrix al-
gorithms, computations often alternate between “memory-bound” phases and “CPU-
bound” phases [3]. In addition, the sparsity and the nonzeros locations determine the
amount and the granularity of communication as well as load distribution. This also
presents a significant challenge for accurate performance modeling. On the other hand,
simulation-based performance modelsoffer the potential for taking into account details
of the input and reproduce the relevant system behaviors. Wepropose a methodology
for creating performance models where the computation is represented by a sequence
of interleaved memory operations, the calls to the BLAS routines, and the inter-process
communications. Our model simulates the steps of the algorithm as driven by the input



and charges for the cost of memory accesses, local arithmetic calculations, and commu-
nications.

Our simulation framework consists of two components. The first component is a low
level library of Performance Modeling Tools, PMTOOLS, which is based on our previ-
ous work in modeling parallel sparse LU factorization [1]. The PMTOOLS library can
be generally useful for modeling any parallel linear algebra algorithms, dense or sparse.
With slight modification, PMTOOLScan also be used to study performance of larger ap-
plication codes. The second component is application-specific simulation module, which
depends on the specific algorithm to be modeled and which consults PMTOOLS to obtain
the running times of the low level operations. In the following sections, we will describe
each component in more detail, and show the simulation results with validations.

Our objective is twofold: 1) we would like to predict performance of existing imple-
mentations on different architectures, including hypothetical machines that do not exist
yet. To this end, we build the application-specific simulation module by mimicking com-
putations and communications in the actual implementationincluding software/hardware
interactions. 2) We would like to use this simulation framework to help design and pro-
totype new algorithms, and eliminate bad algorithm choices. This is an even more valu-
able and novel use of this predictive framework, which distinguishes our work from the
others in the area of performance evaluation and benchmarking.

2. Performance Modeling Tools

PMTOOLS is a collection of tools intended to calibrate performance of the machine’s in-
dividual components. It contains the micro-benchmarks, the data structures and manage-
ment routines for storing and retrieving the data collectedby the micro-benchmarks, and
a cache simulator to represent the memory hierarchy at runtime. Each micro-benchmark
is run off-line and measures the times taken by a basic operation, such as the execution
of a BLAS routine, over a parameter space of interest and the data are collected into
the tables once and for all. These data represent the cost functions of the relevant opera-
tions at the simulation time. Since the configuration space can be extremely large, some
configurations are omitted. The omitted values are later estimated using various inter-
polation or curve-fitting algorithms [5,12]. Currently, PMTOOLS contains the following
three models.

1) Memory model. PMTOOLS provides a cache simulator capable of combining sev-
eral cache instances. Each instance is parameterized according to the cache character-
istics (e.g. capacity and associativity) of the target system. Thus, we can compose an
entire memory hierarchy simulator that also includes the TLBs. The simulator has two
functions: to maintain the state of the memory hierarchy throughout a simulation and to
estimate the cost of each operation. We designed a memory micro-benchmark to mea-
sure the latency and bandwidth of each level of the cache. Thelatencies are measured by
timing the updates at various memory locations. Each level in the memory hierarchy is
measured in isolation by choosing the locations of the updates in a controlled operational
regime, so that each access hits the desired cache level. Thelatency for this level is de-
rived accurately [9]. The bandwidth is measured by timing sequential memory accesses.
The measured bandwidth is applicable as long as the number ofconsecutive memory
locations transferred is greater than a threshold that triggers hardware prefetching.



2) Model of linear algebra kernels. Most high level linear algebra algorithms can be
expressed as a number of calls to the BLAS routines, which provide a nice abstract in-
terface between the high level algorithms and the low level arithmetic engine. In PM-
TOOLS, we use micro-benchmarks to measure performance of the BLASkernels of in-
terest, with varying matrix/vector dimensions. The timings are measured off-line and
stored in the lookup tables, and will be retrieved later during the application’s simulation.
Since the parameters space can be very large, timing each possible point is both time-
consuming and requires large tables. Instead, we benchmarkthe routines of all the small
dimensions which are sensitive to timings, but only for a subset of the other larger dimen-
sions. During simulation, the probing function first searches the tables for the given di-
mensions; if such dimension is not found, an estimate is obtained by linear interpolation
using the closest times available in the table (or extrapolation if the dimensions are out-
side the bounds). We note that this simple interpolation/extrapolation can be improved
by a more sophisticated scheme to improve prediction accuracy [12].

3) Communication model. The communication model is based on point-to-point mes-
sage passing. The other communication primitives such as collective communication are
modeled as a sequence of point-to-point transfers. We perform the measurement of vary-
ing message sizes off-line, store the timings in a lookup table, and retrieve the timings
during the actual simulation. The cost of a transfer is measured using a ping-pong micro-
benchmark, and again, the probing function either consultsthe lookup table for the cost
of a given message size, or does interpolation for the message sizes not directly mea-
sured. Our table includes the ping-pong timings between twoprocessors, as well as the
timings with simultaneous ping-pongs among all pairs of processors. We also support
the SMP or multicore CMP nodes in that the micro-benchmark isrun to measure both
intra-node and inter-node communication. The probing function can take the information
about the number of nodes and the two processes involved, andreturn the appropriate
measured cost.

3. Application-specific Simulation Modules

To demonstrate the effectiveness of PMTOOLS for achieving our first objective, we con-
sider an existing implementation of sparse LU factorization in SuperLU_DIST [6]. The
LU factorization algorithm uses supernodal block structure in the kernel. The factored
matrices L and U are stored in compressed format and distributed with block cyclic lay-
out on a 2D processor grid. Each unit of work (or a vertex in thedataflow graph) is de-
fined as a block column/row factorization in a right-lookingfashion, and the factoriza-
tion proceeds sequentially along the outerK-dimension. A single level of pipelining (i.e.
one step look-ahead) was implemented by hand across thekth and(k + 1)st iterations
to shorten the critical path. Figure 1 illustrates such a block distribution. The highlighted
block column and row correspond to thekth step of outer factorization.

We developed a simulation module which is a close mimic of thefactorization algo-
rithm except that we do not perform the actual operations, but only advance the simulated
runtime. This is done by charging the times for each BLAS function and MPI function,
using the probing function provided by PMTOOLS. The memory system is also closely
simulated as if the algorithm is run on a real machine. The simulation module first in-
stantiates the memory state for the cache simulator in PMTOOLS. During simulation,
whenever the algorithm involves a memory access, the moduleconsults the cache simu-



Figure 1. Sparse LU block cyclic distribution.

Algorithm 1 SuperLU_DIST: simulated update of thekth block row ofU .
1: for all p ∈ Processors ∧ UBLOCKS_OF _P (p, k) 6= ∅ do
2: time[p] = time[p] + memory_update(p, stack)
3: time[p] = time[p] + memory_read(p, index)
4: end for
5: for all b ∈ UBLOCKS(k) do
6: p← OWNER(b)
7: time[p] = time[p] + memory_read(p, b)
8: for all j ∈ b do
9: if columnj is not emptythen

10: time[p] = time[p] + lookup(dtrsv, sizeof(j))
11: end if
12: end for
13: end for
14: for all p ∈ Processors ∧ UBLOCKS_OF _P (p, k) 6= ∅ do
15: time[p] = time[p] + memory_update(p, stack)
16: end for

lator to obtain the access time and to trigger an update to thestate of the memory. As an
illustration, Algorithm 1 shows the simulated procedure that corresponds to the update
of a block row ofU . The procedure shows how the cost of each simulated operation is
collected. Memory access functions (e.g.,memory_update andmemory_read) take
a parameterp to indicate the instance of the simulated memory system thatbelongs to
processorp.

We validated the model on eight unsymmetric matrices selected from the Univer-
sity of Florida Sparse Matrix Collection [2]:bbmat, ecl32, g7jac200, inv-extrusion,
mixing-tank, stomach, torso1, and twotone. We used up to 64 processors with two dif-
ferent machines at NERSC, one is an IBM Power5 (bassi) and another is a Cray XT4
with quad-core AMD Opteron nodes (franklin). Figure 2 shows the percentage abso-
lute errors of the predicted times versus the actual times for the eight matrices (shown in
the legend). In most cases, our simulated time is accurate within 15% error. The average
absolute prediction errors among all matrices and processor configurations are only 6.1%
and 6.6% for the IBM Power5 and the Cray XT4, respectively. This level of accuracy is
remarkable for such complicated sparse matrix calculations.

In addition to analyzing performance of the existing implementation, we have used
this simulation model to forecast the performance of different algorithm choices, and
successfully improved the parallel efficiency.



(a) IBM Power5 (b) Cray XT4

Figure 2. Accuracy of the simulated factorization times compared to the actual times. Each bar represents one
matrix.

1) Shape of the processor grid. For a fixed processor count, the shape of the 2D pro-
cessor grid can affect the factorization speed. We used our model to predict the optimal
shape of the processor grid with 16 processors. Figure 3 shows the actual running times
and the simulated times for the eight matrices. The model wasable to correctly sort the
grid shapes using the simulated execution times, and the processor grid shape2 × 8 is
the best in most cases.

2) Latency-reducing panel factorization. The panel factorization at each step of the
outer loop usually lies on the critical path. The original algorithm performs a series of
broadcasts for each rank-1 update. An alternative design isto use asynchronous point-
to-point communication, reducing the latency cost. We ran the simulation with different
strategies, and then chose the best simulated one to implement. This optimization led to
20-25% improvement for the entire factorization on 64 processors.

Figure 3. Choices of the shapes of the processor grid with 16 processors. Each matrix has 10 bars, divided
into 2 groups of 5 each. The left group is from the actual runs,and the right group is from simulation. For each
matrix, the two bars of the same color represent the same shape.

4. Prototyping New Factorization Algorithms by Simulation

We have been designing and prototyping parallel sparse Cholesky factorization using the
SuperLU_DIST code base. Cholesky factorization works for symmetric positive definite
matrices, which requires half of the operations and half of the memory compared to
LU factorization. That is, after factorization, the upper triangular matrix is equal to the
transpose of the lower triangular matrix, and so the algorithm only needs to compute the
lower triangular matrix.



In a symmetric factorization, the computation of the block rows and the update of
the upper triangular part of the trailing submatrices are not required. However, the block
rows are still needed for updating the lower triangular part. By symmetry, these blocks
reside only in the symmetric block column. A simple adaptation of SuperLU_DIST’s
sparse data layout and communication is as follows (see Figure 1). At each step of the
outer factorization the block column ofL is aggregated and replicated on the processors
that own the block column. Then, each of these processors sends the entire block column
along its processor row. Sending the entire block column ensures that all the processors
involved in the update of the trailing submatrix are provided with all the data required.
Like the LU factorization in SuperLU_DIST, we implemented asingle level of pipelining
scheme for better overlapping communication with computation and shortening the crit-
ical path. The implementation in the SuperLU_DIST framework is straightforward, but
the drawbacks are that it sends more data than necessary and imposes synchronization of
the processors along each block column.

We built a simulation module to analyze performance of this algorithm. For our
experiments we used a suite of 8 matrices (2cubes_sphere, boneS01, ship_001, smt,
bmw7st_1, hood, nd3k, and thread) and ran on an IBM Power5, and a Cray XT4. Our
simulation predicts that collective communication becomes a performance bottleneck
and seems to hinder scalability. In fact, it can be observed that comparing the timings
of Cholesky factorization and LU factorization, when the increased communication cost
outweighs the reduction in computation time, there is almost no speedup and sometimes
there is even a slowdown. This effect is most noticeable for small matrices and when
scaling up the number of processors, see Figure 4. However, in some cases we observed
very large discrepancy between predicted and measured timewhere the actual running
time is unexpectedly high (e.g. on 64 processors the factorization is 3 times slower that
on 1 processor); we are currently investigating the causes of what appears to be a perfor-
mance bug in the Cholesky algorithm.

(a) IBM Power5 (b) Cray XT4

Figure 4. Speedup achieved by Cholesky factorization relative to LU factorization applied to the same prob-
lem. Each line represents one matrix.

An alternative parallelization is block-oriented in whichthe sparse factor is repre-
sented by blocks (in contrast to block column in SuperLU_DIST). Each block is sent to
only those processors that need it, and the communication will not be restricted along
each processor row. This eliminates the need for synchronization of each column pro-
cessors but may involve transferring more messages of smaller size. This was shown to
work reasonably well on earlier machines [8], but it is not clear on the newer machines
which have much faster processors relative to interconnectspeed. Since a block-oriented
approach requires different ad-hoc data structures, we plan to develop a new simulation
module in order to compare the two strategies before engaging in the costly implemen-
tation.



5. Related Work

Performance modeling efforts range from developing synthetic benchmarking suites for
measuring raw performance of the machines’ individual components to developing high
level tools and application-specific cost models for performance prediction [11,4,10,12].

Our micro-benchmarkingapproaches to measuring the raw latencies and bandwidths
of the memory and interconnect systems are based on the widely adopted methodology
of Saavedra et al. [9]. By systematically accessing memory locations with varying range
and stride, it is possible to derive the latency, line size and associativity of each cache
level. Similarly is done in STREAM [7] and MultiMAPS [10], with the difference that
our micro-benchmarks combine multiple tests in order to estimate a larger set of param-
eters. Our MPI ping-pong benchmarking is similar to IMB [4],but we consciously per-
form the ping-pong tests with single pair and all pairs, as well as intra-node and inter-
node. This covers most scenarios of the point-to-point communications occurred in real
applications.

A major difference between our framework and many others appears in the way
how the application performance profile is collected. A popular approach is trace-based,
such as [12], which captures the addresses of the program during execution, and feed
the trace to the memory simulator to derive runtime with different cache configurations.
The drawbacks of this approach are that it can only predict performance for the ex-
isting applications and analyze codes that are purely memory-bound. We chose to use
simulation-based approach at the application level mainlybecause we would like to use
this framework for faster prototyping of new algorithms, inaddition to analyzing existing
implementations. Writing the simulation code with different algorithm choices is much
easier than implementing the actual algorithms (see Algorithm 1), since we can avoid
dealing with the details of the complicated sparse matrix data structures. Furthermore,
an important characteristic of sparse matrix factorization algorithms is that they consist
of a mixture of memory-bound and CPU-bound phases, hence anymethod simply based
on memory-bound characteristic would likely overestimateruntime. That is why we de-
veloped a separate benchmark model for the BLAS kernels, which captures most of the
CPU-bound phases. Thus, our combined memory simulator and BLAS benchmarks can
predict performance of this workload mixture more accurately. Our simulation frame-
work is also more flexible in that once we create an application module, the inputs (e.g.,
different sparse matrices) and the processor configurations are arguments of a simulation
run, whereas a trace-based method needs a re-run of the code when the input changes.

Previously, Grigori et al. made a first attempt for developing a realistic simulation
model to study the sparse factorization algorithm implemented in SuperLU_DIST [3].
Their framework is also simulation-based, containing memory simulator, detailed mod-
els of BLAS kernels, and a communication bandwidth model forvarying message sizes.
The model has greatly improved the prediction accuracy, butit is tailored for a spe-
cific algorithm-implementation and requires estimation ofthe instructions involved in
the BLAS routines. Therefore, it is very difficult to adapt todifferent algorithms and to
achieve our Goal 2).

6. Conclusions

Performance models based on simulations are very useful in several cases: to enable rapid
prototyping of new algorithms, to evaluate systems design,and to model performance



that heavily depends on complex characteristics of the input. With PMTOOLS we mod-
eled parallel sparse LU factorization and we observed errors within 15% in most cases
and an average of less than 7% error across two different architectures for up to 64 pro-
cessors. More importantly, the model proved to be useful forour goal of new algorithm
design.

Our results indicate that the approach is promising and is applicable in modeling dif-
ferent and perhaps more complex applications. While the achieved accuracy in the work
presented seemed sufficient for our goals, it exposed some weaknesses of the framework,
namely the inaccuracy that might arise in presence of contention. To improve the robust-
ness of our framework we plan to model the effect of resourcescontention as it is be-
coming a crucial aspect of multi-core systems. To this end wewill investigate two types
of contention: contention of memory resources, and contention of network resources.

Acknowledgement
This research was supported in part by the NSF contract ACI0326013, and in part by the
Director, Office of Science, Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It used resources
of the National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

[1] P. Cicotti, X. S. Li, and Scott B. Baden. LUSim: A framework for simulation-based performance model-
ing and prediction of parallel sparse LU factorization. Technical Report LBNL-196E, Lawrence Berke-
ley National Laboratory, May 2008.

[2] Timothy A. Davis. University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/
research/sparse/matrices.

[3] L. Grigori and X. S. Li. Towards an accurate performance modeling of parallel sparse factorization.
Applicable Algebra in Engineering, Communication, and Computing, 18(3):241–261, 2007.

[4] Intel R© MPI Benchmarks 3.2. http://software.intel.com/en-us/articles/
intel-mpi-benchmarks/.

[5] Raj Jain.The Art of Computer Systems Performance Analysis. John Wiley & Sons, New York, 1991.
[6] Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct

solver for unsymmetric linear systems.ACM Trans. Mathematical Software, 29(2):110–140, June 2003.
[7] John D. McCalpin. Memory bandwidth and machine balance in current high performance computers.

IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, Decem-
ber 1995.

[8] Edward Rothberg and Anoop Gupta. An efficient block-oriented approach to parallel sparse cholesky
factorization.SIAM J. Scientific Computing, 15(6):1413–1439, November 1994.

[9] Rafael H. Saavedra and Alan J. Smith. Measuring cache andtlb performance and their effect on bench-
mark run times. Technical report no. usc-cs-93-546, University of Southern California, 1993.

[10] Allan Snavely, Laura Carrington, Nicole Wolter, JesusLabarta, Rosa Badia, and Avi Purkayastha. A
framework for application performance modeling and prediction. InSupercomputing (SC02), Baltimore,
MD, November 16-22, 2002.

[11] E. Strohmaier and H. Shan. Architecture independent performance characterization and benchmark-
ing for scientific applications. InInternational Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, Volendam, The Netherlands, Oct. 2004.

[12] Mustafa M Tikir, Laura Carrington, Erich Strohmaier, and Allan Snavely. A genetic algorithms ap-
proach to modeling the performance of memory-bound computations. InSupercomputing (SC07), Reno,
California, November 10-16, 2007.


