PARALLEL SYMBOLIC FACTORIZATION FOR SPARSE LU WITH
STATIC PIVOTING

L. GRIGORI* J.W. DEMMEL® X.S. LI®

LINRIA Rennes, Campus Universitaire de Beaulieu, Avenue du General Leclerc
Rennes, 35042, France. email: Laura.Grigori@irisa.fr
2 Computer Science Division and Mathematics Department,
UC Berkeley, CA 94720-1776, USA. email: demmelQ@cs.berkeley.edu
3 Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 5 0F-1650
Berkeley, CA 94720-8139, USA. email: XSLi@Ibl.gov

Abstract. This paper presents the design and implementation of a memory scalable parallel
symbolic factorization algorithm for general sparse unsymmetric matrices. Our parallel algorithm
uses a graph partitioning approach, applied to the graph of |A|+|A|T, to partition the matrix in such
a way that is good for sparsity preservation as well as for parallel factorization. The partitioning
yields a so-called separator tree which represents the dependencies among the computations. We use
the separator tree to distribute the input matrix over the processors using a block cyclic approach
and a subtree to sub-processor mapping. The parallel algorithm performs a bottom up traversal of
the separator tree. With a combination of right-looking and left-looking partial factorizations, the
algorithm obtains one column structure of L and one row structure of U at each step. The algorithm
is implemented in C and MPI. From a performance study on large matrices, we show that the parallel
algorithm significantly reduces the memory requirement of the symbolic factorization step, as well
as the overall memory requirement of the parallel solver. It also often reduces the runtime of the
sequential algorithm, which is already relatively small. In general, the parallel algorithm prevents
the symbolic factorization step from being a time or memory bottleneck of the parallel solver.

1. Introduction. We consider solving a sparse unsymmetric system of linear
equations Az = b using a direct method, which first factorizes the matrix A into the
product of a unit lower triangular matrix L and an upper triangular matrix U, then
solves LUx = b via two triangular solutions. One distinct property of sparse LU fac-
torization is the notion of fill-in. That is, a zero element in the original matrix A can
become nonzero in L and U. The purpose of symbolic factorization is to compute the
nonzero structure of the factors L and U, which contains the original nonzero elements
in A as well as the filled elements. When there is no need to pivot during numerical
factorization, the nonzero structure of L and U can be computed without referring to
the numerical values of the matrix. This allows us to allocate sufficient memory and
to organize computations before numerical factorization. Computationally, symbolic
factorization is usually much faster than numerical factorization, and hence there has
not been much motivation to parallelize this step. However, as numerical factorization
has been made more and more scalable, symbolic factorization can become a serious
bottleneck. In particular, a sequential algorithm requires the nonzero structure of
the matrix A to be assembled onto one processor, which leads to a serious bottle-
neck in memory (if not timewise). We have therefore designed and implemented a
memory-scalable symbolic factorization algorithm for distributed memory machines.
The parallel algorithm and the software are suitable for sparse LU factorization with
static pivoting [20].

We developed this parallel algorithm in the context of the SuperLU_DIST [20]
solver, which is a widely used sparse direct solver for distributed memory parallel
computers. SuperLU_DIST contains several distinct steps in the solution process:

1. Choose a permutation matrix P, and diagonal matrices D and D5 so that the
diagonal entries of Py D1 ADs are +1 and the magnitudes of the off-diagonal
entries are bounded by 1. The above equilibration and permutation help
ensure accuracy of the computed solution. Currently, this is achieved using
the HSL routine MC64 [6]. The purpose of the large-diagonal permutation is
to decrease the probability of encountering small pivots during factorization.

2. Reorder the equations and variables by using a heuristic that chooses a per-

1

mutation matrix P> so that the number of fill-in elements in the factors L
and U of P,Py D1 AD,P] is reduced.

3. Perform the symbolic factorization to identify the locations of the nonzero
entries of L and U.

4. Compute the numerical values of L and U.

5. Perform triangular solutions.

6. Perform a few steps of an iterative method like iterative refinement if the
solution is not accurate enough.

In the current version of SuperLU_DIST, the numerical factorization and trian-
gular solutions are performed in parallel, but the first three steps are done sequen-
tially. Our new parallel symbolic factorization algorithm uses PARMETIS [18] (parallel
MeTis) to find a sparsity-preserving ordering (second step), and performs the sub-
sequent structural analysis in parallel using a distributed input matrix (third step).
Therefore, once we have integrated this algorithm in the solver, the only remain-
ing sequential bottleneck will be in the first step, for which parallelization work is
underway [21].

There are few results published in the literature on the parallelization of the sym-
bolic factorization. Most of them consider the Cholesky factorization of symmetric
positive definite (SPD) matrices. For these matrices, the symbolic factorization can
be expressed by a tree structure, called the elimination tree, that represents the tran-
sitive reduction of the graph of the Cholesky factor L. The approach used in [23, 24]
consists of computing in parallel first the structure of the elimination tree and then
the symbolic factorization. While the latter step can be easily parallelized, the par-
allelization of the former is a difficult task and leads to modest speedup. A parallel
symbolic factorization algorithm is also presented in [16] and is part of the PSPASES
direct solver for SPD matrices. The algorithm is driven by the two-dimensional distri-
bution of the data (designed for the numerical factorization step) and the elimination
tree of A. The authors report that the parallel symbolic factorization takes relatively
little time compared to the other steps of the solver.

In the case of unsymmetric matrices, the transitive reduction of the graphs of L
and U leads to general directed acyclic graphs. The parallelization of the symbolic
factorization of unsymmetric matrices is even more difficult than that of symmetric
matrices, since it does not get the benefit of using a tree structure. A parallel algorithm
for the factorization of unsymmetric matrices is presented in [2]. It is based on a
sequential algorithm that exhibits ideal parallelism, but has two main drawbacks. It
needs the input matrix to be replicated on every processor’s local memory, and hence
is not scalable in memory. The sequential algorithm on which the parallel formulation
is based is much slower in practice than more recent and improved sequential symbolic
factorization algorithms.

The difficulty in formulating a scalable parallel algorithm lies in the small compu-
tation to communication ratio and in the sequential data dependency. Our primary
goal in this research is to develop a parallel algorithm that provides memory scala-
bility. At the same time, even if the serial runtime of the symbolic factorization is
already relatively small, we still want to achieve reasonable speedup, otherwise it will
dominate runtime with larger number of processors. Our purpose is to obtain enough
speedup to prevent this step from being a computational bottleneck. For this, our
algorithm exploits two types of parallelism. The first type of parallelism relies on a
graph partitioning approach, to reduce the fill-in and to permute the matrix to a suit-
able form for parallel execution. The graph partitioning is applied on the symmetrized
matrix |A| + |A|T, where |A| denotes the matrix of absolute values of the entries of
matrix A. The second type of parallelism is based on a block cyclic distribution of
the matrix, which is a standard technique used in parallel matrix computations. To
further decrease the runtime, we exploit the fact that as the elimination proceeds, the
remaining submatrices in L and U become progressively full, and at some point we
can treat the remaining submatrix as a full matrix.

2

The choice of using a graph partitioning approach is in accordance with the state-
of-the-art in parallelizing the ordering algorithms. The algorithms based on a local
greedy strategy, such as minimum-degree ordering algorithm, have proved to be diffi-
cult to parallelize. For example, the parallelization of one of its variants was discussed
by Chen et al. [1]. The parallel algorithm was designed for shared memory machines,
and only limited speedups were obtained. The main sources of inefficiency come from
insufficient parallelism and load imbalance. Nested dissection, on the other hand, is
an algorithm that uses a top-down divide-and-conquer paradigm. It first computes
a vertex separator of the entire graph that divides the matrix into two disconnected
parts. The matrix is reordered such that the variables corresponding to the separator
are ordered after those in the disconnected parts. This splitting-reordering process is
then recursively applied to the two disconnected parts, respectively. The main advan-
tage is that the reordered form of the matrix is suitable for parallel computation. The
state-of-the-art nested dissection algorithms use multilevel partitioning [13, 14, 17]. A
widely used, highly parallel code is PARMETIS [18], which we will use as our ordering
front-end preceding the symbolic factorization.

The rest of the paper is organized as follows. Section 2 briefly reviews several
sequential symbolic factorization algorithms. Section 3 discusses the parallel sym-
bolic factorization algorithm. Section 4 describes several techniques to identify dense
submatrices in the factors L and U and thus reduce the runtime of the symbolic fac-
torization. Section 5 presents the experimental results obtained when applying the
algorithm on real world matrices and Section 6 concludes the paper.

2. Unsymmetric symbolic factorization. In this section we present briefly
the various sequential algorithms described in the literature [7, 10, 11, 22], with an
emphasis on the algorithm used in our parallel approach. The differences between
the existing algorithms mostly lie in three aspects: 1) whether the algorithm uses
the structure of A alone or also uses the partly computed structure of L and U; 2)
different ways to improve the runtime of the algorithm; and 3) whether the algorithm
computes the nonzero structure of the factors by rows, by columns or by both rows
and columns. As noted in [10], theoretically none of the algorithms dominates the
other. In practice, their complexity is greater than nnz(L 4 U), but is much smaller
than the number of floating-point operations required for numerical factorization.
However, the experiments performed on small sized matrices [10] and discussion of
aspect 1) showed that the algorithms that use the structure of A alone are slower
than the algorithms that use the structure of A and the partly computed structure
of L and U. The other results addressing aspect 2) showed that improvements based
on approaches like supernodes, symmetric pruning (we will describe these approaches
later in this section) significantly reduced the symbolic factorization time.

Let A be a sparse unsymmetric n X n matrix and let nnz(A) denote the number
of its nonzero elements. In what follows, Str(A) refers to the nonzero structure of
the matrix A. a;; represents the element of row ¢ and column j of matrix A, while
A(k : 7,i : j) represents the submatrix consisting of rows k through r and columns
¢ through j of A. G(A) denotes the directed graph associated with matrix A. This
graph has n vertices and an edge (i, j) for each nonzero element a;;.

Our parallel algorithm is based on a variant that computes progressively the
nonzero structure of L by columns and that of U by rows, using at each step the
partial structure previously computed. That is, the structure of the ¢th column of
L is formed by the union of Str(A(: : n,4)) with a subset of columns of L before i.
This subset of columus is determined from Str(U(:,4)). And the structure of the ith
row of U is given in a similar way by the union of Str(A(i,7 : n)) with a subset of
the previous rows of U. The following theorem states how the structure of L can be
determined by those of A and U.

THEOREM 2.1 (Rose and Tarjan [22]).

Str(L(:,4)) = Str(A(i : n,i) U U {Str(L(i:n,7)) | (j,7) is an edge of G(U(1:i-1,:))}
3

To decrease the runtime of the algorithm, we use two different improvements. The
first improvement, called symmetric reduction or symmetric pruning, was proposed
by Eisenstat and Liu [7]. It is based on the observation from Theorem 2.1 that only
the structures of a subset of the columns L(:, j) need to be considered in computing
Str(L(:,1)). This subset is determined by the symmetric elements of the factors, that
are used to remove some (but not all) redundant edges in the graphs of L and U.
For example, if both l;; and u;; are nonzero and k < ¢, we must have Str(L(k :
n,j) C Str(L(:,k)). Then, when computing Str(L(:,)), to avoid redundant work, it
is sufficient to consider only Str(L(:, k)). The symmetric reduction of the structure
of U(j,:) (structure of L(:, j)) is obtained by removing all nonzeros u;; (nonzeros ly;)
for which lx; and u;;, are nonzeros and ¢t > k.

The second improvement is based on the notion of supernode, used in one of the
more recent algorithms [4], and also in SuperLU_DIST [20]. In SuperLU_DIST, the
symbolic factorization computes the structure of L and U by columns. A supernode
groups together successive columns of L with the same nonzero structure, so they can
be treated as a dense submatrix. At the end of each step, the symbolic factorization
algorithm decides whether the new column ¢ of L belongs to the same supernode as
column ¢ — 1 of L. If it does, then it is not necessary to store the structure of column
i in memory. That is, for each supernode, only the structure of its first column is
stored. This leads to an important reduction in the memory needs of the symbolic
factorization. Furthermore, supernodes also help reduce the runtime of the symbolic
factorization. This is because to compute Str(L(:,4)), the previous supernodes are
used instead of the columns 1,...,7 — 1.

In our variant, a supernode groups together successive columns of L having the
same structure and successive rows of U having the same structure. This definition is
appropriate for our algorithm that computes the structure of L by columns and that
of U by rows. The symmetric pruning for each supernode consists of finding the first
symmetric nonzero that does not belong to the diagonal block of the supernode. This
is equal to the first symmetric nonzero of the last column of L and last row of U of
the supernode.

From a memory point of view, the usage of supernodes leads to a decrease in the
memory needs of the symbolic factorization algorithm. From a computation point of
view, the supernodes used in our variant do not lead to removing more redundant
work in Theorem 2.1 than symmetric pruning alone does. For example, consider the
computation of the structure of L and a supernode formed by indices s,s + 1,...¢.
Denote by ¢ the first symmetric nonzero of this supernode, where ¢ > t. When
supernodes are used, the structure of the first column of the supernode L(:, s) is used
in the computation of the structure of all the columns L(:,7), with ¢ < j < ¢ and
usj 7 0. Consider now that only symmetric pruning is used. For every index k such
that s < k < t, the first symmetric nonzero corresponds to index k + 1, that is {511k
and wug g1 are nonzero. Hence, all the entries after k£ + 1 will be pruned. And the
symmetric pruning information corresponding to column ¢ of L and row ¢ of U is the
same as the symmetric pruning information corresponding to the supernode. For all
the indices j with t < j < ¢ and us; # 0, the structure of column L(:,¢) is included
in the structure of all the columns L(:,). But the structure of column ¢ of L is the
same as the structure of column s of L and the structure of row ¢ of U is the same
as the structure of row s of U. Hence, computing the structure of L(:,j) involves
the same number of operations when symmetric pruning is used or when supernodes
and symmetric pruning are used. However, since the symmetric pruning information
corresponding only to the first column of L and row of U of a supernode is stored,
the usage of supernodes helps decrease the time and the memory necessary for storing
the symmetric pruning information.

Algorithm 1 presents this variant in a so-called left-looking approach. When it
arrives at the ith step of computation, Str(L(:,1:4— 1)) and Str(U(1:i—1,:)) are

4

known. Str(L(:,4)) is formed using column 7 of the pruned structure of U(1:4—1,:)
(denoted as prU(1 :i—1,:)). Str(U(i,:)) is formed using row ¢ of the pruned structure
of L(:;1 :4—1) (denoted as prL(:,1 : ¢ — 1)). Then the first symmetric nonzero in
Str(L(:,4)) and Str(U(i,:)) is determined. The pruned column ¢ of L is added to prL
and the pruned row i of U is added to prU. For the sake of clarity, this algorithm
does not use supernodes. In Section 3 we will also use a right-looking approach, in
which for example for the structure of L, at the ith step of computation, the structure
of column ¢ is computed and then is used to update the partially computed structure
of columns i + 1 to n that need it.

Algorithm 1 Left-Looking symbolic factorization
for i :=1tondo
Compute Str((1,1)) =

Str(A(i)) U U {Str(L(i:m,j)) | (4,7) is an edge of G(prU(1 : i —1,:))}
Compute Str((i,:)) =

Str(A(n)) U U {Str(U(j,i:n)) | (i,7) is an edge of G(prL(:,1:3— 1))}
k:=n

determine %k := min(j) such that /;; and u;; are nonzeros
add Str(L(i : k,i)) to prL and Str(U(i,i : k)) to prU
end for

The time spent in step 1 of Algorithm 1 is bounded by the number of operations
to multiply the matrix L(:,1:4 — 1) by the vector prU(:,i) at each step 4, which is
written informally as ops(L-prU) [10]. Similarly, the time spent in step 2 is bounded
by ops(prL - U). The complexity of the entire algorithm is dominated by these two
steps.

We illustrate Algorithm 1 in Figure 2.1 on an example matrix A with nonzero
diagonal and of order 8. The matrix at the left shows the results obtained when
only symmetric pruning is used, while the matrix at the right shows how Algorithm 1
performs when supernodes are used in adition to symmetric pruning. We suppose
that the first 5 columns of L and the first 5 rows of U have been computed and that
the algorithm arrives at the computation of the 6th column of L. The dark circles
represent nonzero elements of the original matrix A and the empty circles represent
fill-in elements of the factors. The elements belonging to prL and prU are doubly
circled.

Consider first that only symmetric pruning is used (left of Figure 2.1). For ex-
ample, [32 and us3 are nonzeros, then for the index 2, only these two elements belong
to prL and prU. The structure of prU(:,6) is formed by the elements w1 and usg.
Hence, to compute the structure of L(:, 6), the algorithm forms the union of structures
of A(6:8,6), L(6:8,1) and L(6: 8,5).

Consider now that supernodes are used in addition to symmetric pruning (right
of Figure 2.1). Nodes 2 and 3 form a supernode, because columns 2 and 3 of L have
the same structure and rows 2 and 3 of U have the same structure. Similarly, nodes
4 and 5 form another supernode. Symmetric pruning information corresponding only
to the first column of L and row of U of a supernode is added to prL and prU. For
example, l4o and usy are nonzeros, then only elements l4o and us4 belong to prL and
respectively prU (we store only the indices off the diagonal block). The symmetric
nonzeros considered for pruning are 4o and wuo4, because 4 is the first node not in the
supernode formed by 2 and 3.

To compute the structure of L(:,6), the algorithm forms the union of structures
of A(6 : 8,6), L(6 : 8 1) and L(6 : 8,4). Since indices 4 and 5 belong to the same
supernode, the structure of L(6 : 8,4) is the same as the structure of L(6 : 8,5).
Hence, from a computation point of view, forming the structure of column 6 of L

5

using supernodes and symmetric pruning is equivalent to the previous approach that
uses only symmetric pruning. But the usage of supernodes decreases the memory
needs. Only the columns of L and rows of U corresponding to indices 1,2 and 4 are
stored.

1 ® ® 1 O O
2 @ e ° 200 @ °
® ®| 3|0 o @®|e| 3|0 o
00 4|@ o0 @ O|ls|0|@®@ @
@® ®| 5 0|0 O] ®| 5/ 0|0
6 6
e /0@ O|O]|7 e ol®@ o|lo|7
® O|po|O|O|lO]| 8 ® O|lo|OlO|l0O| 8

Fic. 2.1. Ezample matriz A that illustrates Algorithm 1 using only symmetric pruning (left)
and using symmetric pruning and supernodes (right).

3. Parallel unsymmetric symbolic factorization. We now describe our par-
allel unsymmetric symbolic factorization algorithm. Our algorithm uses the partly
computed Str(L) and Str(U) as the algorithm progresses and exploits two types of
parallelism. The first type comes from the graph partitioning approach, which is used
as a fill-reducing ordering step. This approach partitions the matrix in a suitable way
for parallel factorization and also provides a tree structure representing the depen-
dencies among the computations. The second type of parallelism depends on a block
cyclic distribution of the data.

The partitioning approach uses the graph of the symmetrized matrix |A| + |A|T
to identify a vertex separator that splits the graph into two disconnected subgraphs.
If the vertices of the separator are ordered after the vertices in the disconnected
subgraphs, a blocked matrix suitable for parallel computation is obtained. The par-
titioning defines a binary tree structure, called the separator tree. Each node of this
tree corresponds to a separator. The root of the tree corresponds to the separator
from the first level partitioning. Then each branch corresponds to one of the discon-
nected subgraphs. The partitioning can then be applied recursively on each subgraph.
Figure 3.1 illustrates a matrix partitioned in two levels with four disconnected sub-
graphs. Its corresponding separator tree is depicted in Figure 3.2, where we number
the levels of the binary tree starting with 0 at the bottom. This numbering does not
reflect the top-down graph partitioning approch. Instead, it reflects the bottom-up
traversal of the tree during our symbolic factorization algorithm. In Figure 3.1, the
patterned blocks illustrate portions of the matrix that can contain nonzero elements.
The meaning of the different patterns used will be described later in this section.

The separator tree plays an important role in sparse factorizations because it
shows the parallelism from the partition of the matrix and identifies dependencies
among the computations. If Str(L(:, j)) is needed in computing Str(L(:,4)), then the
node owning index j belongs to the subtree rooted at the node owning index 1.

In order to perform the symbolic factorization in parallel, the nodes of the sep-
arator tree are assigned to processors using the standard subtree-to-subcube algo-
rithm [9, 12]. This algorithm considers that the separator tree is well balanced. That
is, each partitioning leads to two disconnected graphs of roughly the same size. In
practice, unbalanced trees can be obtained, and a better mapping of nodes to proces-
sors can be used. We plan to address this problem in our future work.

The subtree-to-subcube algorithm maps nodes to processors during a top-down
traversal of the separator tree. It starts by assigning all the p processors to the root.
Then it assigns p/2 processors to each of the two subtrees of the root. This process
is continued until only one processor is assigned to a subtree. The advantage of this

6

MY WO eoeee

Vi

7 U i) f 7 N
g =55 40CE

R R Y

Y

AT

N

ARy

Fic. 3.1. Ezample matriz and data distribution for parallel symbolic factorization algorithm
executed on 4 processors.

Level 2

Level 1

Level O

F1c. 3.2. Separator tree corresponding to the example matrix in Figure 3.1.

algorithm is that the communication in a subtree is restricted to only the processors
assigned to this subtree, thus hopefully ensuring a low communication cost. Each
node of the tree is associated with a range of indices. All the processors assigned to
a node will cooperate to compute the structure of the columns of L and of the rows
of U whose indices are associated with the node. The indices are distributed among
those processors using a 1D block cyclic distribution along the diagonal, in a block
arrow shape.

Consider again Figures 3.1 and 3.2. Suppose that we have 4 processors. The
subtree-to-subcube mapping is illustrated in Figure 3.2 in which we label the proces-
sors assigned to each node of the separator tree. The 1D block cyclic data distribution
is illustrated in Figure 3.1, where we use different patterns for different processors.

Algorithm 2 describes the main steps of the parallel symbolic factorization al-
gorithm. Each processor performs a bottom-up traversal of the separator tree to
participate in factorizing the nodes it owns. It starts with an independent symbolic
factorization phase for the indices associated with its leaf node, using a left-looking
algorithm similar to Algorithm 1. Then at each higher level of the tree, each proces-
sor is involved in computing one node D that it owns at this level. The computation
of each D consists of two phases. In the first phase, named inter-level factorization,
the columns of L and rows of U corresponding to the indices associated with D are
updated in a right-looking manner by the columns of L and rows of U belonging to
the predecessors of D in the separator tree. In the second phase, named intra-level
factorization, all the processors participate in completing the symbolic factorization
of node D, using a combination of right-looking and left-looking partial symbolic
factorization method.

We now use Figure 3.3 to illustrate the execution of Algorithm 2 step by step.
Consider level 1 of the tree. The computation of the right node D (doubly circled in the

7

Algorithm 2 Parallel Symbolic Factorization
let myPE be my processor number, P be the total number of processors
compute symbolic factorization of leaf node in a left-looking fashion
for each level from [:= 1 to logP in the separator tree do
let v and v be the first and last indices of node D that myPE owns
for ¢ := p to v such that myPFE owns index ¢ do
init Str(L(:, 1)) = Str(A(i : n, 1))
init Str(U(,:)) := Str(A(4,7 : n))
end for
Inter-level Symbolic Factorization (myPFE, [) (Algorithm 3)
Intra-level Symbolic Factorization (myPE,) (Algorithm 4)

end for

figure) is assigned to processors P», P3. We use the following notation to distinguish
the indices and their corresponding columns of L and rows of U associated with each
node. The indices corresponding to the right node of level 1 are marked in patterned
white, and the indices to be used to update this node and that correspond to the leaf
nodes assigned to P, and Pj3 are in dark gray. All the other indices, not involved in
the computation considered here, are displayed in light gray.

At this stage, processor P, has already computed the structures of L and U of the
indices associated with the left leaf node, and processor Ps; has done so with the right
leaf node. During inter-level factorization, processors P, and Ps will determine which
columns of L and which rows of U from the leaf nodes are needed for updating node D.
This data is first exchanged between P; and Ps, and node D is then updated in a right-
looking fashion. During intra-level factorization, factorization of node D is completed
using a block cyclic algorithm, where factorization of each block is performed in a
left-looking fashion, and then the block is used to update the subsequent blocks in a
right-looking fashion.

Po Pl Pz Pa
111
: R
§\\\\\\\\\\\\\\\\\\\\“ Level 2
\
§ Level 1
N
N
§ Level 0
N

Fi1c. 3.3. Ezample illustrating the parallel symbolic factorization (Algorithm 2) on the example
matriz in Figure 8.1 for the doubly circled node assigned to processors Pa, P3. Its associated indices
are marked in patterned white, and the indices to be used to update this node and that correspond
to the leaf nodes assigned to P2 and P3 are in dark gray. All the other indices are displayed in light
gray.

Algorithm 3 details the inter-level factorization. Consider the computation of
node D at level I, which is assigned to processors P, ... P,. This phase performs all
the updates that the indices of node D must receive from the indices below node D.
Only the indices associated with the nodes in the subtree rooted at D can contribute
to these updates. Each processor determines the source of the updating data (columns

8

of L and rows of U) that it owns and that belongs to nodes of the subtree rooted
at D. Then the data is copied in a send buffer. Because of sparsity, it is very likely
that this processor needs to send data to only a small subset of the processors that
own node D. Several implementations of this collective communication are possible.
In our current implementation, we use a simple scheme that assumes that the receive
buffer of each processor is large enough to store all the incoming messages. We have
tested this scheme on the matrices in our test set and we have observed that the size
of the receive buffer represents a small fraction of the total memory needs. Thus, we
expect that this scheme will not affect the memory scalability of our algorithm.

Each processor can determine the destination processors to send the data. After
a global exchange among the processors owning node D, each processor also knows
from whom the data needs to be received. Afterwards, each processor sends its data
to destination processors in a non-blocking manner, and then posts all the necessary
receives. Since we need to release the send/receive buffers, the received data have to be
consumed right away. This is achieved by using a right-looking approach, as described
in Algorithm 5, to update the indices associated with node D. In our example, the
indices that contribute to this update are shown in dark gray. Processors P; and
Ps exchange necessary parts of columns of L and rows of U corresponding to these
indices.

Algorithm 3 Inter-level Symbolic Factorization

Input: myPFE : my processor number, [: level in the separator tree

let D be the node at level | owned by processor myPE

let P ... P, be the processors assigned to node D

let v and v be the first and last indices of node D

copy data (columns of L, rows of U) to be sent to Pr ... P, in sendBuf

determine the processors that myPFE needs to exchange data with

for each processor P in Py ... P, to which data needs to be sent do
non-blocking Send sendBuf to P

end for

for each processor P in Py ... P, from which data needs to be received do
Recv data (columns of L, rows of U) in recvBuf
Right-Looking update of U(u : v,:) and L(:, p : v) using recvBuf

end for

Wait for all non-blocking Sends to complete

Algorithm 4 details the intra-level factorization. The goal is to complete the fac-
torization of node D by performing all the necessary updates between the indices
associated with node D. The algorithm is a block variant of right-looking factor-
ization. It provides a general framework to perform asynchronously a right-looking
factorization of a sparse matrix. The algorithm proceeds as follows. Each processor
myPFE iterates over the blocks of node D that it owns. Let P,.... P, be the g —r+1
processors that are assigned to node D in 1D block cyclic fashion. Assume processor
myPFE arrives at the computation of block K.

First, processor myPFE has to receive a number of messages from the processors
that computed blocks K —q+r, ..., K—1 to update its blocks in a right-looking fashion.
To determine the number of messages that have to be received, we use an auxiliary
array noM sgsToRcv, that is initialized to 0. This array keeps global information on
the number of messages that every processor needs to receive. Locally, each processor
stores the number of messages that were already received in the variable myM sgs.

Processor myPFE will receive the array noM sgsToRcv from the owner of block
K — 1 and noMsgsToRcv[myPE] gives the number of messages myPE has to re-
ceive at this step of computation. This is implemented as follows. Processor myPFE
posts a non-blocking receive from the owner of block K — 1, anticipating the array

9

noM sgsToRcv. The condition variable rcvdArray is set when this non-blocking re-
ceive is completed. While waiting for this message, myPFE iterates over a loop, in
which a non-blocking receive for data is posted at each iteration. When a message is
received, if it corresponds to data, the later blocks of node D owned by myPE are
updated in a right-looking fashion. The variable myM sgs is incremented by one. If
the message received corresponds to the array noM sgsToRcv, then myPE knows how
many messages must be received. If all the messages were received, the last posted
data receive is canceled. If not, myPFE continues with receiving all the necessary data
messages.

Second, processor myPFE has to complete the factorization of block K itself. This
is performed using a left-looking approach, similar to Algorithm 1. The difference is
that the algorithm iterates from the first index of block K (uk) to the last index of
block K (v), instead of iterating from 1 to n as in Algorithm 1, where n is the order
of the matrix A.

Third, processor myPFE needs to identify all the processors to which block K
should be sent. For each such processor P, the value of noMsgsToRcv[P] is in-
cremented. And if K is not the last block of node D, myPFE sends the array
noM sgsToRcv to the owner of block K + 1. Since the matrix is sparse, the data
needs to be sent to only a small subset of processors. Empirically, we have observed
that this number is usually 2 or 3. In particular, in symmetric cases, the data needs
to be sent to only the processor owning the next block.

The block cyclic distribution of columns of L and rows of U helps maintain load
balance. Note that we need the rows of U to determine what columns of L need to be
sent to which processors. Similarly, we need the columns of L to determine to which
processors we need to send the rows of U. It is easy to determine this communication
pattern because of the arrow shape layout.

4. Exploiting density in the separators. In this section, we describe one
optimization technique that can easily improve the runtime of symbolic factorization.
It is well-known that towards the end of the elimination, the factored matrices become
progressively full. In addition, we also observed that the submatrices associated with
the separators become progressively full as well. A symbolic factorization algorithm
that computes Str(L) by columns and Str(U) by rows can easily identify the density
in the factors. Moreover, since our parallel algorithm uses a 1D distribution of the data
along the diagonal, this detection can be implemented without any communication.

4.1. Separator with dense diagonal block. Consider Algorithm 2 when it
arrives at the intra-level computation of node D consisting of indices pu,...v. Let B
be the diagonal block submatrix associated with the separator, that is,

B=L(p:v,p:v)+U(p:v,u:v)

Once the structures of column p of L and row p of U have been computed, the sizes
r=nnz(L(p : v,p)) and ¢ = nnz(U(p, p = v)) are known. The product rq gives a
lower bound on the fill in B. If the product rq is (v — p)?, B would be completely
full. Then, there is no need to compute the subsequent rows of L and columns of U
corresponding to the indices u + 1 to v. Note that even if B is not entirely full, we
can use the ratio rq/(v — p)? as a parameter to control relazation, that is, padding
zeros in B to increase the size of supernodes.

The following theorems show that, given a full B on the diagonal, the off-diagonal
block structures for L and U can also be easily determined. In fact, the L part is
formed by the dense subrows that end at column v and the U part is formed by the
dense subcolumns that end at row v, as depicted in Figure 4.1. These structures are
often referred to as skyline structures.

THEOREM 4.1. Consider A = LU and assume u; ;41 s nonzero, for i = p,
...v— 1. If aji is nonzero for some j with j > p and j > k, then lj; is nonzero for
all t such that j <t <w.

10

Algorithm 4 Intra-level Symbolic Factorization

Input: myPFE : my processor number, [: level in the separator tree
let D be node of level | owned by processor myPE
let P, ... P, be the processors assigned to node D
let p© and v be the first and last indices of node D
let N; be number of blocks node D is divided into
initialize array noMsgsToRcv|]| to 0
initialize variable myMsgs to 0
for each block K from 1 to N; that myPFE owns do
let px and vk be the first and last indices of block K
revdArray = FALSE
post non-blocking Recv for array noM sgsToRcv
post non-blocking Recv for data in recvBuf
while myMsgs # noM sgsToRcv[myPE] and rcvdArray # TRUE do
Wait for a receive to complete
if message received corresponds to data then
increment variable myM sgs by one
Right-Looking update of L(:, ux : v) and U(uxk : v,:) using recvBuf
else
/* message received corresponds to noMsgsToRcv[]*/
Cancel non blocking receive of data if myMsgs = noM sgsToRcv[myPE]
rcvdArray = TRUFE
end if
end while
Left-Looking symbolic factorization to compute L(:, ux : vk) and U(uk : vk, :)
if K is not the last block then
for each processor P in P, ... P; to which myPFE needs to send data do
Increment noM sgsToRcv[P] by one
Send L(:, pux : vk) and U(uk : vik,:) to P
end for
Send noM sgsToRcv]| to owner of block K + 1
end if

end for

Algorithm 5 Right-Looking update of L(:, p: v), U(p: v,:)

Input: recvBuf, L(:,pu:v), U(p:v,:), myPE
Output: Updated L(:,p: v), U(p: v,:)
initialize prL, prU to empty
for each index j of recvBuf do
let k be such that [;; and ux; are nonzeros
if thereisan i st l;; #0, i <k, u <i < v, myPE owns index i then
add pruned column j of L to prL
end if
if there is an i st uj; #0, 1 <k, p < i <v, myPE owns index ¢ then
add pruned row j of U to prU
end if
end for
for i := p to v such that myPFE owns index ¢ do
Add to Str(L(:,4)) the union U{Str(L(i: n,j)) | (4,%) is an edge of G(prU)}
Add to Str(U(3,:)) the union U{Str(U(j,i:n)) | (¢,7) is an edge of G(prL)}
end for

11

Proof. First, li is nonzero because aji is nonzero (here as elsewhere, we do
not consider cancellation). Since u; ;+1 is nonzero for all ¢, 4 < i < v — 1, then by
Theorem 2.1, Str(L(:,4)) € Str(L(:,i + 1)), for all 4, p < ¢ < v — 1, Hence 1} is
nonzero for all ¢ from j to v. O

THEOREM 4.2. Consider A = LU and assumel; ;11 is nonzero, fori = p,...v—1.
If a1, is nonzero for some j with j > pu and j < k, then uj; is nonzero for all t such
that j <t <w.

Proof. Similar to the proof of Theorem 4.1. O

first last

S 2 M N
- 1008

A

Level 2

Level 1

Level 0

F1c. 4.1. Ezample of the skyline structures of L and U when the separator has a dense diagonal
block. The left node of level 1 (doubly circled) has the dense diagonal block from p to v.

We explain now how the nonzero structure of a range of indices of L corresponding
to node D is computed, using the fact that the diagonal B is full. The computation
of the nonzero structure of U is similar. The key is to compute for each column
(v < i <v)aset FNZ(i) that contains the row indices of the rows of A that have
the first nonzero in column i. More formally, FNZ is defined as:

FNZ@G@)={jlaji #0and ajs =0 forallt € (n:i—1)}

The computation of FFINZ is achieved as follows. Let processors P, ... P, be
assigned to node D. First, every processor determines locally the column index i of
the first nonzero in row j of A owned by this processor. Then a parallel reduction
operation is applied among all the processors P, ... P, to determine the first nonzero
column index for each entire row j. This information is used to compute the structure
FNZ. Then the structure of column i of L is simply the union of FNZ(k) for
p<k<i

Note that the sets FNZ(u)... FNZ(v) are disjoint. If data is well balanced
among processors, the total computational cost is dominated by O(nnz(L)/P) plus
the cost of a call to M PI_Allreduce. In intra-level symbolic factorization, Algorithm 4
tries to identify dense diagonals after computing the structure of each index. When
a dense column and row is found, this computation is performed for the rest of the
separator.

4.2. Separators with dense structures belonging to a path of the sepa-
rator tree. One further optimization is to identify the dense separators on a path of
the separator tree. Consider again Algorithm 2 when it arrives at the intra-level com-
putation of node D consisting of variables y, ...v. Let B be the submatrix containing
the variables associated with all the nodes on the path from node D to the root.
Define r = nnz(L(:,u)) and ¢ = nnz(U(y,:)). The product rq represents a lower
bound on the number of fill in the submatrix B. If r and g are the same and equal
the order of B, then we know B is full. That is, all the submatrices associated with
the nodes on the path from D to the root are dense. This is illustrated in Figure 4.2.
The processor that detects this p column sends messages to all the other processors

12

involved in the nodes on the path from D to the root. The rest of the algorithm is
simply to generate the indices of these dense submatrices.

first last
7. 777 77,
i N

PO Pl PZ P3

/N E

Level 2
Level 1

Level 0

F1c. 4.2. Ezample of the dense structures of L and U when there are dense separators on a
path to the root. The nodes of the tree corresponding to the dense separators are doubly circled.

5. Experimental results. In this section, we present experimental results for
our parallel symbolic factorization algorithm applied to real world matrices. We
tested the algorithm on an IBM SP RS/6000 distributed memory machine at NERSC
(National Energy Research Scientific Computing Center). The system contains 2944
compute processors distributed among 184 compute nodes. Each processor is clocked
at 375 Mhz and has a peak performance of 1.5 GFlops. Each node of 16 processors
has 16 to 64 Gbytes of shared memory.

We use several medium to large size matrices that are representative of a variety
of application domains. The matrices and their characteristics are summarized in
Table 5.1, which includes the matrix order, the number of nonzeros, the structural
symmetry, and the application domain. We show the average number of nonzeros
per column of original matrix A, as a measure of sparsity. The matrices are avail-
able from University of Florida Sparse Matrix collection [3] (BBMAT, STOMACH, PRE2,
TORSO1l, TWOTONE, MARK3JAC140sC, G73AC200sc, LHrR71c) and the accelerator design
project at the Stanford Linear Accelerator Center [19] (pps.Quap.K-sM, pps15.K-sM).
To analyze the memory scalability of our algorithm, we also use matrices obtained
from the 11-point discretization of the Laplacian operator on three dimensional grids
(REG3D).

The goal of the experiments is two-fold. Firstly, we want to study the performance
of the new parallel symbolic factorization algorithm itself. Secondly, we want to
examine the performance improvement of the entire solution process of SuperLU_DIST
gained by parallelizing the symbolic factorization step. Our performance criteria
include both runtime and memory usage. As stated in the introduction, our goal is to
prevent the symbolic factorization step from being a bottleneck (especially in terms
of memory) in the entire solution process. We show here that this goal is indeed
achieved.

For the second study, we present detailed performance results for the first six
matrices in our test set. We compare the performance of two configurations of Su-
perLU_DIST, one is referred to as SLU_SFseq in which the serial symbolic factoriza-
tion algorithm is used as before, and the other is referred to as SLU_SFpar in which
the new parallel symbolic factorization algorithm is used. We keep the other phases
the same as much as possible, including the scaling and the pre-pivoting using the
sequential routine MC64 [6] from the HSL collection [15], the fill-reducing ordering
using PARMETIS applied to the structure of |A|+|A|T, the numerical LU factorization,
and the triangular solutions.

Because of the different data structures used in symbolic factorization, the re-
distribution of the matrix from the storage format used in symbolic factorization

13

Matrix Order nnz(A) | Structural | nnz(A)/n | Application Domain
Sym.
REG3D 729000 7905960 1.0 10.8 3D Laplacian
cubic grid size 90
DDS.QUAD.K-sM | 380698 | 15844364 1.0 41.6 accelerator design
DDS15.K-sM 834575 | 13100653 1.0 15.7 accelerator design
STOMACH 213360 3021648 .85 14.2 bioengineering
BBMAT 38744 1771722 .53 45.7 fluid flow
PRE2 659033 5834044 .33 8.8 circuit simulation
TORSO1 116158 8516500 42 73.3 bioengineering
TWOTONE 120750 1206265 .24 10.0 circuit simulation
MARK3JAC140sC 64089 376395 .07 5.9 economic modeling
G7IAC200sC 59310 717620 .03 12.1 economic modeling
LHRT71C 70304 1528092 .00 21.7 | chemical engineering
TABLE 5.1

Benchmark matrices.

to the storage format used in numeric factorization is different. We will report sepa-
rately the timings for symbolic factorization (“SFseq” for SLU_SFseq and “SFpar” for
SLU_SFpar) and the timings for re-distribution (“RDseq” for SLU_SFseq and “RD-
par” for SLU_SFpar). Another difference between the two configurations lies in the
supernode definitions. SLU_SFseq groups in a supernode the columns of L with the
same structure, whereas SLU_SFpar groups in a supernode the indices corresponding
to the columns of L with the same structure and to the rows of U with the same
structure. Thus, the definition in SLU_SFpar is more restrictive, and tends to give
more supernodes of smaller sizes. This difference may lead to different runtimes of
numerical factorization and triangular solutions, but empirically we observed that the
differences are very small, and thus we report the average time obtained by these steps
in the two solvers.

The matrix A is distributed among processors in a block row format, which is
consistent with the input format required by PARMETIs. In SLU_SFseq, the distributed
matrix is gathered such that every processor has a copy of it. Then MC64 is called
on one processor to determine a row permutation, which in turn is broadcast to
every other processor. The structure of |A| + |A|T is computed in parallel using the
distributed input matrix, and then PARMETIS is called. The symbolic factorization
step is performed redundantly on each processor. The distributed structure of L and
U is then set up among the processors with a 2D block-cyclic distribution over a 2D
processor grid, which will be used in numerical factorization.

In SLU_SFpar, the matrix is gathered on one processor only to perform the first
step (calling MC64) sequentially. All the other steps involve the distributed input
matrix. (Although this means that the solver as tested is not yet memory scalable,
the work in progress that parallelizes the first step [21] should solve this problem.)
The structure of |A| + |A|T is computed in parallel, and then PARMETIs is called.
The data is then distributed in the arrow shaped format among the processors, and
parallel symbolic factorization is performed. Afterwards, the data is re-distributed
from this arrow shaped format to the 2D block-cyclic distribution over a 2D processor
grid, which will be used in numerical factorization.

Notice that SuperLU_DIST can be used on any number of processors. But the
partitioning performed by PARMETIs is only applicable to a number of processors that
is a power of two. Therefore, in our code, we have another data re-distribution phase
when the processors to be used is not a power of two. That is, we choose the largest
power-of-two that is at most the total number of processors, and distribute the data

14

to this subset of processors for parallel ordering and symbolic factorization. After
that, we re-populate the matrix to the full set of processors.

To perform the same numeric factorization in both configurations, we turned off
supernode relaxation in SuperLU_DIST. This is because the relaxation is determined
using the elimination tree that we do not have in SLU_SFpar when the input matrix
is distributed. Ideally, each processor can locally compute a partial elimination tree
associated with each leaf node of the separator tree, and perform relaxation locally.
But we have not implemented this scheme. In [4] it was shown that supernode relax-
ation leads to improvements of 5% to 15% in the running time of sequential SuperLU.
We expect that similar improvements can be obtained in the running time of the
distributed numeric factorization.

The experimental results for the first six matrices in our test set are presented in
the runtime plots of Figure 5.1, and in the memory usage plots of Figure 5.2.

For the runtime performance, we display in each plot of Figure 5.1 the total time
of the solver when using sequential or parallel symbolic factorization (SLU_SFseq
and SLU_SFpar), the runtime of numerical factorization (Factor), parallel reordering
(PARMETIS), sequential and parallel symbolic factorization (SFseq and SFpar) and
re-distribution (RDseq and RDpar).

For memory usage evaluation, we report in the plots in Figure 5.2 the maximum
memory requirement per processor throughout the entire solution process (except
MC64; see below). The peak is likely to occur in the re-distribution routine from
the symbolic factorization data structure to the numeric factorization data structure,
or in the numeric factorization routine. The re-distribution routine needs as input
the nonzero structures of L and U. Memory is allocated to store these structures
along with the space for the numerical values of L and U. Several auxiliary arrays are
used in this routine when placing the numerical values of A into their corresponding
positions of the factors L and U. Those arrays and the input nonzero structures of
L and U are deallocated on return. The memory need in the numerical factorization
routine is given by the 2D storage of structural and numerical information of the
factors plus several supplementary arrays needed for communication.

We ignore for the moment the memory needs of MC64, which is dominated by
the size of the matrix A, because in the future this step will be replaced by a parallel
algorithm [21]. We report only the memory needs of the symbolic factorization step
and of the numeric factorization step. The memory needs of the other steps of the
algorithm are dominated by the size of the distributed matrix A, or the size of the
distributed factor L, or the size of the distributed factor U, which are not the bot-
tlenecks in the solver. Therefore, we do not report memory statistics for any of the
other steps.

Our parallel symbolic factorization algorithm uses two kinds of data, replicated
data and distributed data. The replicated data are two arrays of size n, where n is
the order of the matrix. The first replicated array is used as a marker during the
computation of Str(L) and Str(U). The second replicated array is a mapping array
that shows for each variable its owner and its local index. That is, every variable has
a global index which is known by all the processors and a local index which is known
and used only by its owner. To set up the communication in the algorithms, each
processor needs to determine the owners of certain variables. This local-global index
translation is achieved by this mapping array. The distributed data are those whose
size per processor is expected to decrease when increasing the number of processors.
These are the arrays used to store the Str(L) and Str(U), the arrays to store the
pruned structures of L and U, and the buffers needed for communication.

In summary, the data reported are as follows: maximum memory used by the
solver using sequential and parallel symbolic factorization (SLU_SFseq MAX and
SLU_SFpar MAX); memory used during sequential and parallel symbolic factorization
(SFseq and SFpar MAX); maximum memory used during numerical factorization
(Factor MAX).

15

Notice that the ordering results of PARMETIS differ using different number of pro-
cessors. (They are usually worse with increasing number of processors.) Consequently,
the runtime and the memory usage corresponding to the sequential symbolic factor-
ization changes with different number of processors. With the exception of REG3D,
for the runs of all the other matrices we used 16 processors per node.

REG3D DDS.QUAD
10° ¢ T T T T T T . " 3 10* g T T T T T T -
E I SLU_SFseq £ I SLU_SFseq [
[I SLU_SFpar [] E I SLU_SFpar [
r [Factor H r [Factor i
10° b [CJPARMETIS | [[CJPARMETIS]|
E [_ISFseq g 10° b i
[[TIRDseq i E A
iy r [SFpar H % F o
20k I RDpar I 2 r f
3 E El 8 T 1
& F] é 10% b El
[} r B [} E 9
E 2 £ £ q
£ 107 | El g I]
] £ E S
['4 E] o F 4
L R 10t | E
| ‘ | | | E ‘ | ‘ |
0 | I | 0 | | |
10 1 2 4 8 16 32 64 128 10 1 2 4 8 16 32 64 128
Number of processors Number of processors
DDS15 STOMACH
10° £ : : : : : : - - e 10% £ - - - - - ; . 3
E Il SLU_SFseq§ E Il SLU_SFseq
L I SLU_SFpar (| L [SLU_SFpar [|
E [Factor H E [Factor H
104 L [IPARMETIS || 103 L [IPARMETIS ||
E [_ISFseq H E [_ISFseq g
L [TIRDseq i [[TIRDseq i
5 s [SFpar H @ L [SFpar H
2L I RDpar I 2tk I RDpar (|
s E g 51 E =
8k i Sk E
O r] 23 []
g .l |- 1
1% 3 W ;
S £ 1 S E |
x L] o4 L E|
E 10° £ El
107t

L L
16 32 64 128 1 2 4 8 16 32 64 128

1 4 8
Number of processors Number of processors
BBMAT PRE2

10* . . . : : . : : = 10* £ =
E I SLU_SFseq | E I SLU_SFseqj
[I SLU_SFpar [] E I SLU_SFpar [
r [Factor H r [Factor i
[CJPARMETIS |J [[CJPARMETIS]|
Bl | 0 B0 |
% I I SFpar H & = B sFpar]
g 102k I RDpar i ° r I RDpar M
3 E E| § r |
et] D107 £ E
[r] [E |
E 1l i E]
‘g 10 E E =] r]
o] g f i
L 1 10 | E
) | E | | | ||| | “ |

10™ L L L L L L L L 100 | | |

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of processors Number of processors

F1c. 5.1. Runtimes (in logarithmic scale) for parallel reordering (PARMETIS), sequential and
parallel symbolic factorization and re-distribution (SFseq and SFpar, RDseq and RDpar), numeric
factorization (Factor) and the entire solvers (SLU_SFseq and SLU_SFpar) for matrices in our test
set.

16

Memory usage (Mbytes)

Memory usage (Mbytes)

Memory usage (Mbytes)

REG3D DDS.QUAD

10° 10
£ T T T T T T T o' ¢ T T T
E Il SLU_SFseq MA E Il SLU_SFseq MA
[[SLU_SFpar MAX [] [[SLU_SFpar MAX []
r [ISFseq [[ISFseq [l
10 L [SFpar MAX r [SFpar MAX Ml
E I Factor MAX 108 b I Factor MAX
L] 7w F
L] o £]
2 I]
10° . 1
E [
F i R0k E
[] & E
10% £ Pl F q
E S F 4
£ £ L 1
r 7 10t £
10" £ £
0 0
10 1 2 4 8 16 32 64 128 0 1 2 4 8 16 32 64 128
Number of processors Number of processors
DDS15 STOMACH
10* ¢ !) . : = 10° ¢) . .
E I SLU_SFseq MAX f £ I SLU_SFseq MAX [
F [SLU_SFpar MAX [L [SLU_SFpar MAX]
r [ISFseq Ml r [CISFseq M
[[SFpar MAX M [[SFpar MAX M
10% b I Factor MAX L r I Factor MAX i
5 E 10% 3
10°

10

Memory usage (Mbytes)
S>—\
T —

N

L e e
[——————
NE——————

4 8

NE————————

4 8

10° 10°
16 32 64 128 16 32 64 128
Number of processors Number of processors
BBMAT PRE2
10° g : 10% g . . . ! ! =
E I SLU_SFseq MAX] £ I SLU_SFseq MAX
[[SLU_SFpar MAX [[[SLU_SFpar MAX [
r [ISFseq Il [[ISFseq [l
[SFpar MAX Ml r [SFpar MAX Ml
r I Factor MAX i 108 b I Factor MAX
w E
10? F g I 1
E e L 4
L i é i
i 1
E q &10% F E|
& E
L i =] E
> r]
o L i
10 £] E []
L 1 =
[] 10 £
0 0
0 1 2 4 8 16 32 64 128 0 1 2 4 8 16 32 64 128
Number of processors Number of processors

F1G. 5.2. Memory usage (in logarithmic scale) for sequential and parallel symbolic factorization
(SFseq and SFpar MAX), numeric factorization (Factor) and the entire solvers (SLU_SFseq and
SLU_SFpar) for matrices in our test set.

17

Since the algorithm behaviors are very different for the matrices that are struc-
turally symmetric than for those that are very unsymmetric, we first report the results
separately for these two classes of problems.

5.1. Performance with structurally-symmetric matrices. In this section
we discuss the results with the structurally symmetric matrices. In fact, our symmetric
test matrices are also positive definite, so there is no need to call MC64 (that can
destroy the symmetry of the input matrix). The code was compiled using 64-bit
addressing mode so that each process can use more than 2 GBytes of memory. In the
parallel symbolic factorization algorithm, the block size used in the 1D block cyclic
layout is 50.

In our parallel algorithm, the symmetrically pruned graph determines the com-
munication pattern. For symmetric matrices, we obtain the benefit of symmetric
reduction to the maximum extent. That is, the pruned graph contains only the first
off-diagonal nonzero element in the first off-diagonal block, and is in fact the same
as the supernodal elimination tree. Then, every variable is used in the computation
of at most one other variable. The communication volume is therefore bounded by
the number of nonzeros in Str(L) and Str(U). Thus the algorithm needs a low com-
munication volume in both inter-level and intra-level factorizations. On the other
hand, this also implies that the algorithm has a limited parallelism in the intra-level
factorization, where a right-looking block cyclic approach is used.

We first examine the results for the model problem rEG3D. We use a cubic grid
of size NX = NY = NZ = 90 with an 11-point discretization. We see in the plot
REG3D of Figure 5.1 that the runtime of SFpar continues to decrease with increasing
number of processors up to 64, achieving very good speedup—30.0 on 64 processors.
The re-distribution routine implemented in SLU_SFpar is usually a little faster than
that in SLU_SFseq, with differences larger on more processors. Overall, the entire
SLU_SFpar solver is about 16% faster than SLU_SFseq on 128 processors.

The plot rREG3D in Figure 5.2 reports the memory usage. On 32 processors, the
memory need of SFseq becomes larger than that of the per-processor need in numeric
factorization. On 128 processors, the memory need of SFseq is 5 times more than that
of the per-processor need in numeric factorization. Thus, sequential symbolic factor-
ization is indeed the bottleneck for memory scalability of SuperLU_DIST. Our parallel
symbolic factorization algorithm achieves a good memory scalability. For example,
on 128 processors, the memory need of SFpar is 38-fold smaller than that of SFseq.
The reduction in the symbolic factorization phase also leads to significant reduction
in the overall memory usage. On 128 processors, the maximum per-processor memory
needs of SLU_SFpar is only about 28% of that required by SLU_SFseq. Therefore,
SLU_SFpar can solve a much larger problem.

We notice that on eight and sixteen processors, the entire memory needs of
SLU_SFseq are larger than 16 GBytes, which is the available memory on most of
the compute nodes of IBM SP RS/6000 at NERSC. In order to fit the problem in
memory, we had to use more compute nodes than necessary. For example, SLU_SFseq
on sixteen processors was run on two compute nodes, with only eight processors per
node used. In addition, the runtime can slow down severely when the memory used
per node is too large (causing disk swapping). In our experiments, this happended
when SLU_SFseq was run on 32 processors and when SLU_SFpar was run on 16 pro-
cessors. Hence, to obtain the best runtimes, we have used for these two runs twice
more nodes than necessary.

We now examine the results for the irregular problems from the accelerator de-
sign. The plots pps.quap.K-sM and pps15.K-sM in Figure 5.1 show the runtimes of
SLU_SFpar and SLU_SFseq for the two matrices. Again, SFpar exhibits good perfor-
mance, with a maximum speedup of 14.1 on 64 processors for the matrix pps15.K-sM.
The time of SFpar is always smaller than the time spent in PARMETIS. On small num-
ber of processors, the times spent in re-distribution are comparable for RDseq and

18

RDpar. But with increasing number of processors, the time spent in RDpar can be up
to four times smaller than the time spent in RDseq. Overall, the entire SLU_SFpar
solver is about 20% faster than SLU_SFseq on 128 processors for pps.Quap.K-sM.
The plots pDS.QuAD.K-sM and pps15.K-sM in Figure 5.1 compare the memory
usage of SLU_SFpar and SLU_SFseq and various steps in the solvers. We see again
that with increasing number of processors, SFseq becomes the memory bottleneck of
the SLU_SFseq solver. The parallel algorithm reduces the memory usage by more
than 20-fold in symbolic factorization. Overall, the maximum per-processor memory
need by the entire SLU_SFpar solver is only about 38-40% of that by SLU_SFseq.

5.2. Performance of structurally-unsymmetric matrices. The plots BB-
MAT, STOMACH and PRE2 in Figures 5.1 and 5.2 show the results with the unsymmetric
matrices. Since these matrices are smaller than the symmetric ones, each processor
does not need more than 2 GBytes of memory, and the code could succeed when com-
piled with 32-bit addressing mode, In the parallel symbolic factorization algorithm,
the block size used in the 1D block cyclic layout is 50.

When comparing the runtimes of the two solvers SLU_SFpar and SLU_SFseq, we
see that the time spent in numeric factorization dominates the time spent in any other
step, which is true even on 128 processors. The runtime of SFseq is modest for all the
matrices. This is probably because the sizes of those unsymmetric matrices are still
quite moderate. The parallel algorithm further reduces this time. In particular, the
time of SFpar is always smaller than the time spent in PARMETIS. The times spent for
re-distribution (RDseq and RDpar) are comparable on smaller number of processors
(less than 16). But on larger number of processors, RDpar can be much faster than
RDseq (up to 5-fold for BBMAT).

When comparing the memory usage of the sequential symbolic factorization of
SLU_SFseq and the parallel symbolic factorization of SLU_SFpar, we observe that the
memory usage is significantly reduced for all the matrices. It continues to decrease
when increasing the number of processors up to 128. The parallel algorithm reduces
the memory usage by up to 25-fold in symbolic factorization. Overall, the maximum
per-processor memory usage of the entire SLU_SFpar ranges between 18% (BBMAT)
and 60% (Pre2) of that of the SLU_SFseq solver.

5.3. Summary. Figure 5.3 summarizes the runtime and the memory usage of
our parallel symbolic factorization algorithm for the first six matrices in our test
set. In addition, the performance of our algorithm applied to matrices with higher
unsymmetry is shown in Figure 5.4.

For runtime scaling, we show the speedup obtained by our parallel symbolic fac-
torization algorithm with respect to the sequential symbolic factorization algorithm.
We see that for symmetric matrices, the runtime continues to decrease with increas-
ing number of processors up to 32 for pps.quap.K-sM, and up to 64 for REG3D and
pDS15.K-sM. A maximum speedup of 30.0 on 64 processors is obtained for REG3D.
We found that the technique for identifying dense separators plays an important role
for symmetric matrices, it significantly reduces the number of operations in symbolic
factorization. The matrix REG3D represents the best case in terms of exploiting the
dense separators, but we observe a big performance drop on 128 processors. After
further investigation, we found that the technique of identifying dense separators was
much less effective on 128 processors.

For five of our unsymmetric matrices, the time of the parallel symbolic factoriza-
tion decreases when increasing the number of processors up to 16. The best speedups
for SFpar are for matrices BBMAT (8-fold on 32 processors) and Lur71C (9-fold on 32
processors). These three matrices are relatively denser than the other matrices, and
the technique of exploiting dense separators is more effective. For matrix prRE2, which
is more unsymmetric and has very little dense structure, the algorithm achieves a
speedup of almost 4 on 16 processors. For the other three matrices in our test set
(Torsol, TwoToNE and G73Ac200sc), SFpar achieves only a speedup of two, even with

19

increasing number of processors. However, for these matrices the time of SFpar is gen-
erally smaller than the time of PARMETIS. For Torsol, the time spent in the graph
partitioning phase can be ten times larger than the time spent in SFpar.

For memory scaling, we display in Figures 5.3 and 5.4 the decrease in the mem-
ory usage of the parallel symbolic factorization algorithm SFpar with respect to the
memory needs of the sequential symbolic factorization algorithm SFseq. The memory
usage is significantly reduced for all the matrices, with the exception of Torsol. In
the former case, the reduction of memory is observed all the way up to 128 processors.
The largest reduction is obtained with Rec3D for which on 128 processors, the memory
need of SFpar is 38-fold smaller than that of SFseq. For the unsymmetric matrices,
the largest reductions occur with matrices BBMAT (up to 25-fold) and Lur71c (up to
21-fold). Note that on a large number of processors, for the unsymmetric matrices,
the memory used to store the replicated data may become more than what is needed
to store the distributed data. For example, for stomacH the replicated data represents
77% of the memory needs on 128 processors. Still, these matrices help show that the
parallel algorithm exhibits good memory scalability.

For Torsol, the parallel symbolic factorization uses only 4.6 times less memory
than the sequential symbolic factorization. However, in this case PARMETIs leads to
very unbalanced partitioning, as quantified by differences in the sizes of the separators
(in terms of the number of their indices and the number of their nonzero elements of
the input matrix) at each level of the separator tree. For example, we have found that
on 64 processors, the largest ratio of the maximum number of indices per separator
relative to the level’s average number of indices per separator is obtained at the second
level of the separator tree and it is 9.6. On 128 processors this ratio is 9.9 and it is
also obtained at the second level of the separator tree. At the lower level of the
separator tree, the ratio of the maximum number of nonzero elements in a partition
relative to the average number of nonzero elements at this level is equal to 24.9 on
64 processors and 43.3 on 128 processors. As we mentioned already earlier, our data
distribution algorithm is not the best choice for unbalanced separator trees and can
lead to disparity in the per-processor memory usage in such cases and to low overall
memory reduction rates. Indeed, in the case of Torsol, we find that the maximum
per-processor memory usage is 7.6 times larger than the average memory usage on
64 processor and is 8.5 times larger on 128 processors, consistent with the above
hypothesis. We plan to address this problem in our future work.

5.4. Scalability analysis. Recall that our main goal of this research is to de-
velop a parallel symbolic factorization algorithm that is memory scalable. We now
quantify the memory scalability of SFpar using the matrices arising from the 11-point
discretization of the Laplacian operator on three-dimensional cubic grids. The no-
tion of iso-efficiency is useful when studying the scalability of a parallel algorithm. A
parallel algorithm is considered highly scalable if it keeps a constant efficiency as the
number of processors increases while the problem size per processor is kept constant,
where the problem size could be the size of the dataset or the amount of work. For
a memory scalability study, the suitable quantity would be the dataset size, which is
the size of the L and U factors in this case. The memory efficiency on P processors
is computed as the ratio of the memory usage of the sequential algorithm (SFseq)
over the product of the maximum per-processor memory usage of the parallel algo-

rithm (SFpar) and P. That is, Mem. eff. = mem(SFseq) Therefore, we choose

maz.mem(SFpar)xP"

the dimensions of the cubic grids in such a way that the nonzeros of L and U are
maintained roughly constant per processor while increasing the number of processors.
Theoretically, when nested dissection ordering is used, for each matrix of order n, the
number of nonzeros is on the order of O(n*/?) while the amount of work is on the
order of O(n?) [8].

Note that since SFseq and SFpar use very different data organizations (SFseq is
column oriented, whereas SFpar is both column and row oriented), the total memory

20

Runtime performance
30 A

T
—+—REG3D

—O— STOMACH | |
—*— BBMAT
—A— PRE2

25

20

10

. . .
0 20 40 60 80 100 120 140
Number of processors

Memory performance
40 T T T
—+— REG3D
— % —DDS.QUAD
351 - o —DDS15 7]
—0— - STOMACH

—%— BBMAT
—A— PRE2

SFseq / SFpar MAX
N N
=] a

=
o

10

I I I I
0 20 40 60 80 100 120 140
Number of processors

Fic. 5.3. Speedup and memory saving of the parallel symbolic factorization algorithm for the
first siz matrices in our test set.

requirements are very different. In fact, when run on one processor, SFpar usually uses
less memory than SFseq. Therefore, for ease of understanding, we will use a simulated
single processor run of SFpar as the sequential code baseline. Since the PARMETIS
ordering gives different numbers of fill-ins using different numbers of processors, we
do not use the actual run of SFpar on one processor. Instead, we compute a lower
bound of the memory need of Algorithm 1 based on the amount of fill in L and U
after PARMETIS ordering using P processors. This algorithm stores the structure of
L by columns and the structure of U by rows. It also assumes that the input matrix
A is stored by columns below the diagonal and by rows above the diagonal. The
memory needs are as follows. Two arrays of size n and two arrays of size equal to
the supernodal structure of L and U store the structure of the factors. Two arrays of
size n and two arrays, each of size twice the number of supernodes, store the pruned
graphs of L and U. Two arrays, of size n, are used to identify supernodes. One array,
of size n, is used as a marker during the computation of the structure of L and U.
Two arrays of size n and two arrays of size equal to the number of nonzeros of the
original matrix A are used to store the structure of the input matrix.

Table 5.2 reports the size of the grids used, the number of operations and the size

21

Runtime performance
11 T T

T T
—+— TORSO1
— % — TWOTONE i
— © — MARK3JAC140SC
—0— G7JAC200SC
9 $o —*— LHR71C H

.
0 20 40 60 80 100 120 140
Number of processors

Memory performance

25 : T T
—+— TORSO1
— % — TWOTONE
— © — MARK3JAC140SC
20|| —0— G7IAC200SC _-*]
—%—-LHR71C -z Z---0
o T
AT
x P J
< 151 POt q
5 I
g - .
iy P
@ * . -0
o / 4 =
g . -
£ 10+ el -7 4
&% A -0
PR X
, ’ss
-
//d ’
7
sk g/é” i
1
0
0 20 40 60 80 100 120 140

Number of processors

Fic. 5.4. Speedup and memory saving of the parallel symbolic factorization algorithm for the
last five matrices in our test set.

of the factors per process, the time of SFpar and the memory used in the algorithm.
The last two columns give the computed memory lower bound of a sequential symbolic
factorization and the memory efficiency. We see that the algorithm achieves very
respectable efficiencies ranging from 89% on 2 processors to 25% on 128 processors.
The decrease in efficiency with increasing number of processors is mainly due to the
two duplicated arrays of size m, which increase with increasing problem size. For
example, the size of the two arrays on 64 processors is 3.2 MBytes, and on 128
processors is 4.9 MBytes. This represents almost half of the per-processor memory
need. But since now the memory demand in the symbolic factorization phase is not a
bottleneck any more, there is no point in reducing this memory usage at the expense
of the extra runtime.

The parallel runtime is almost constant up to 64 processors. But we observe a
significant increase on 128 processors. With further study, we found that this is due
to the same reasons as were previously observed with matrix REG3D. That is, the
technique of identifying dense separators was less effective on 128 processors than on
smaller number of processors.

22

P | Grid | flops/P | nnz(L +U)/P | Time | Mem. SFpar | Mem. | Mem. Eff.
size (10%) (105) MAX | AVG | SFseq (%)
1 29 5.5 9.5 .8 5.3 5.3 5.2 98
2 34 8.6 10.2 9 5.0 4.9 9.4 94
4 39 12.2 10.0 .8 5.3 4.8 17.6 83
8 46 16.2 9.9 .8 6.0 4.8 34.9 73
16 53 21.2 9.7 7 5.9 5.0 63.0 67
32 62 29.6 9.8 .8 6.8 5.5 | 111.1 51
64 74 46.0 10.7 1.1 8.8 7.2 | 220.2 39
128 85 55.8 10.0 9.8 12.1 9.2 | 390.2 25
TABLE 5.2

Time and memory usage of the parallel symbolic factorization algorithm when the average
number of nonzeros of L and U per processor is kept constant.

6. Conclusions. We have presented a parallel symbolic factorization algorithm
for sparse Gaussian elimination with static pivoting. The algorithm is suitable when
the equations and variables are preordered by a nested dissection algorithm, from
which a binary separator tree is available, and our symbolic factorization algorithm
exploits parallelism exposed by this separator tree.

The performance of the parallel algorithm depends on the partitioning and re-
ordering (e.g., by PARMETIS), the structural symmetry and the density of the matrix.
The more symmetric is the matrix, the smaller is the symmetrically pruned graph,
which leads to a smaller amount of communication. The denser the matrix, the
denser the separators, which the parallel algorithm exploits for faster structural anal-
ysis. For the symmetric test cases, the parallel symbolic factorization algorithm SFpar
has achieved a 14.1-fold speedup on 64 processors when compared with the sequen-
tial symbolic factorization algorithm SFseq (pps15.K-sM, Figure 5.3), and the entire
solver SLU_SFpar is up to 20% faster than the solver SLU_SFseq (pDs.QuaD.K-SM,
Figure 5.1). For the unsymmetric cases, the parallel algorithm SFpar has achieved a
9-fold speedup on 32 processors (LHR71c, Figure 5.4), and the entire solver SLU_SFpar
is up to 16.7% faster than the solver SLU_SFseq on 64 processors (BBMAT, Figure 5.1).

On one processor, SFpar can be slower than SFseq. But on a larger number of
processors, SFpar can be much faster than SFseq.

In the re-distribution step, both versions achieve good speedup. During this step,
the communication patterns for numerical factorization and triangular solutions are
determined. In SLU_SFseq, since every processor has a copy of the reduced structures
of L and U, there is no communication when computing the communication pattern.
In SLU_SFpar, with the distributed reduced structures of L and U, there are fewer
accesses to the data on each processor, but there are more all-to-all communications
to determine the communication pattern. This explains why on smaller numbers of
processors, RDseq is faster, while on large number of processors, RDpar is faster (up
to four times faster for several matrices).

The SFpar algorithm exhibits very good memory scalability. For many matrices,
on one processor the memory usage of SFpar is less than that of SFseq. For all the
matrices, with the exception of one (Torsol), the maximum per-processor memory
usage of SFpar continues to decrease with increasing number of processors up to 128.
For the unsymmetric test cases, on 128 processors, the SFpar maximum per-processor
memory reduction is up to 25-fold compared with SFseq, and the entire SLU_SFpar
solver has up to 5-fold reduction in maximum per-processor memory need compared
with the entire SLU_SFseq solver (BBMAT, Figure 5.2).

For matrix Torsol, PARMETIS leads to an unbalanced partitioning and a cor-
responding unbalanced separator tree. Our data distribution algorithm is not well
suited for unbalanced separator trees, and SFpar leads to a modest reduction of the

23

memory requirement of the symbolic factorization. The unbalance in the partitioning
can be related to the fact that the graph partitioning is applied on the symmetrized
input matrix |A|+ |A|T. Two possible solution can be envisaged, which could remedy
this problem. First, one could try to use a partitioning algorithm that accounts for
the unsymmetry of the input matrix. Second, one could use a better mapping of the
data to processors, that takes into account that the separator tree is unbalanced. We
will leave these options to be addressed in the future.

Nothwistanding that, the experimental results show that SFpar greatly increases
the problem size the parallel SuperLU solver can handle, and the symbolic factor-
ization effectively removes a memory bottleneck in many, if not most of, common
cases.

Acknowledgments. The authors thank the anonymous reviewers for their care-
ful reading and the suggestions to improve the paper.

REFERENCES

[1] T.-Y. Chen, J. R. Gilbert, and S. Toledo. Toward an efficient column minimum degree
code for symmetric multiprocessors. Proceedings of the 9th SIAM Conference on

Parallel Processing for Scientific Computing, 1999.
[2] M. Cosnard and L. Grigori. A parallel algorithm for sparse symbolic LU factorization

without pivoting on out—of-core matrices. In Proceedings of the 15th International

Conference on_Supercomputing, pages 146-153. ACM Press, 2001.
[3] T. Davis. University of Florida Sparse Matrix Collection. NA Digest, vol. 92, no. 42,

October 16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest, vol.

97, no. 23, June 7, 1997. htgp:é/www.cise.uﬂ.edq/research sparse/matrices.
[4] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A Supernodal

Approach to Sparse Partial Pivoting. SIAM J. Mat. Anal. Appl., 20(3):720-755,

1999.
[5] L. S. Duff, R. G. Grimes, and J. G. Lewis. User’s Guide for the Harwell-Boeing Sparse

Matrix Collection (Release i). Technical Report TR/PA/92/86, CERFACS, 1992.
[6] 1. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of

a sparse matrix. SIAM J. Mat. Anal. and Aéapl., 22(4]):9737996, 2001.
[7] S. C. Eisenstat and J. W. H. Liu. Exploiting Structural Symmetry in Unsymmetric

Sparse Symbolic Factorization. SIAM J. Mat. Anal. Appl., 13(1):202-211, 1992.
[8] A. George and J. W. H. Liu. Computer Solution of Large Sparsé Positive Definite

Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.
[9] A. George, J. W. H. Liu, and E. Ng. Communication results for parallel sparse cholesky

factorization on a hypercube. Parallel Comsputmg, 10:287-298, 1989.
[10] J. R. Gilbert and J. W. H. Liu. Elimination Structures for Unsymmetric Sparse LU

Factors. SIAM J. Mat. Anal. Appl., 14(2):334-352, 1993.
[11] A. Gupta. Improved symbolic and numerical Tactorization algorithms for unsymmetric

sparse matrices. SIAM J. Mat. Anal. Appl., 24%2%):5297552, 2002.
[12] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse

matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5),

1995.
[13] B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Algorithm
for Mapping Parallel Computations. SIAM J. Sci. Stat. Comput., 16(2):452-469,

1995.
[14] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. Pro-

ceedings o SuperConIL;puting, 1995.
[15] HSL. A “collection of Fortran codes for large scale scientific computation, 2004.

httﬁ://Www.cse.clrc.ac.uk/nag/hsl/.
[16] M. Joshi, 'G. Karypis, V. Kumar, A. Gupta, and F. Gustavson. PSPASES: An effi-

cient and scalable parallel sparse direct solver. In Proceedings of the Ninth SIAM

Conference on Parallel Processing for Scientific Computinf, 1999. o
[17] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and

sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71-95,
1998.

24

[18] G. Karypis, K. Schloegel, and V. Kumar. PARMEINS: Parallel Graph Partitioning and
Sparse Matrixz Ordering Library — Version 3.1. University of Minnesota, August

2003. htt /{Www-users .cs.umn.edu/~karypis/metis parmetllv{
[19] K. Ko, N. Folwell, L. Ge, A. Guetz, V. Ivanov, L. Lee, Z. Li, 1. Malik, W. Mi, C. Ng,

and M. Wolf. Electromagnetic systems simulation - from simulation to fabrication.

SciDAC report, Stanford Linear Accelerator Center, Menlo Park, CA, 2003.
[20] X. S. Li and Jp Demmel. SuperLU_DIST: A Scalable Distributed- -memory Sparse

Dlrect Solver for Unsymmetric linear systems. ACM Transactions on Mathematical

oftware, 29(2), 2003.
[21] J. R1e y and J. bemmel Parallel bipartite matching for sparse matrix computation,

2005. In preparation.
[22] D. J. Rose and R. E. TarJan Algorithmic aspects of vertex elimination on directed

graphs. SIAMJ pl. Math., 34(1):176-196, 1978.
] A. van Heukelum. Symbolic sparse cholesky factorization using elimination trees. Mas-

ter’s thesis, Dept of Mathematics, Utrecht University, 1999.
[24] E. Zmijewski and J. R. Gilbert. A parallel algorithm’ for sparse symbolic cholesky

factorization on a multlprocessor. Parallel Computing, 7(2):199-210, 1988.

25

