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ABSTRACT

The hierarchical semi-separable (HSS) matrix factorization has use-
ful characteristics for representing low-rank operators on extreme
scale computing systems. To prepare for the higher error rates an-
ticipated with future architectures, this paper introduces new fault-
tolerant algorithms for HSS matrix multiplication that maintain ef-
ficient performance in the presence of high error rates. The mea-
sured runtime overhead for error checking and data preservation
using the Containment Domains library is exceptionally small and
encourages the use of frequent, fine-grained error checking when
using algorithm based fault tolerance.

Categories and Subject Descriptors

1.6.3 [Computing Methodologies]: SIMULATION AND MOD-
ELING—Applications
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1. INTRODUCTION

Emerging extreme-scale architectures pose new challenges for
parallel algorithms. These architectures, due to the expected hard-
ware fault rate, require the use of resilient algorithms, and the high
cost of data movement demands increased computational intensity.
In this paper, we explore the implications of these challenges for
solving linear systems with resilient solvers and preconditioners.
A new class of structured sparse factorization methods employ-
ing numerically low-rank structures, hierarchically semi-separable
(HSS) matrices, may be suitable for broad classes of large partial
differential equations (PDEs) systems that are often too difficult for
current methods. An HSS-sparse solver applies HSS compression
techniques to the dense submatrices appearing in traditional sparse
factorization methods. This compression reduces the number of
floating point operations, leading to nearly linear complexity for
certain PDEs, even in 3D geometry [20]. In addition to the flops re-
duction, a more significant benefit is that HSS compression reduces
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the data volume and the communication/flops ratio on parallel ma-
chines [18, 12]; this reduction is mainly due to the nearly linear
size of the compact HSS data structure. Our interest in exploiting
these algorithms on extreme-scale architectures has led us to inves-
tigate fault-tolerant schemes for HSS matrix operations. This paper
focuses on the matrix multiplication algorithms of an HSS matrix
with a dense vector/matrix.

Many types of faults occur in computer systems [1]. The impact
of these faults and the techniques for detetecting or recovering (or
not recovering) from the errors they induce depend on the timing
and location of the fault. Permanent and intermittent faults cause
frequent failures at the same location and are mitigated by replacing
hardware after uncorrectable permanent errors are detected [15].
Transient faults, such as particle-induced bit flips, are more likely
to be random and not reproduceable. Many transient faults can be
detected and corrected in hardware by ECC and memory scrub-
bers. Rollback recovery, based on checkpoint restart is commonly
enployed on parallel systems to recover from uncorrected faults
that lead to fail-stop errors. When undetected, “soft” (i.e. tran-
sient) faults can modify data without causing the program to halt or
providing other error notification, leading to so-called “silent data
corruption” (SDC) that can propagate through a calculation and re-
sult in incorrect output. In future HPC systems, silent faults are
expected to occur at higher rates than fail-stop errors [14].

Our main goal is to handle SDC, which must be detected before it
can be corrected. The methods we introduce, based on algorithm-
based fault tolerance (ABFT), provide the ability to detect faults
and handle errors in software. Since these error-correction tech-
niques based on data encoding provide limited recovery from pos-
sible errors, we combine encoding techniques with a software roll-
back scheme to achieve full recovery. We have designed several
resilient algorithms for HSS matrix-vector multiplication, which
differ in the points during the computation at which they detect and
recover from errors. Our implementation of the rollback scheme
uses Containment Domains (CDs) [4, 16], a hierarchical recov-
ery mechanism that corresponds to the hierarchical nature of HSS
algorithms. We introduce a finite automata model to describe our
performance, and an approximate Markov model for comparison.
We analyze our results with these models, and compare our results
across error rates to determine their effectiveness. The main contri-
butions of this paper are the FT-HSSmv algorithms, an analysis of
their costs, and measurements of their effectiveness.

2. METHOD

In this section, we describe two methods for detecting and re-
covering from errors during the multiplication of an HSS matrix
with a dense vector (HSSmv) These methods are easily extensible
to matrix multiplication with a dense matrix (HSSmm). HSSmv



and HSSmm are indispensable operations when HSS factorization
is used as a preconditioner in iterative solvers. HSSmv and HSSmm
are also used in the randomized sampling algorithm for HSS con-
struction [11]. In section 2.1, we discuss the advantages and disad-
vantages of resilience by preserving data to safe storage relative to
methods based on checksum encoding. We review the HSS factor-
ization and an HSSmv algorithm for matrix-vector multiplication
in section 2.2, followed by a description of resilient HSSmv algo-
rithms: FT-HSSmv by preservation-restoration in section 2.3 and
FT-HSSmv by encoding in section 2.4.

2.1 Models for algorithm-based fault tolerance

We focus on two different FT schemes for these algorithms:
one is based on preservation-restoration, and the other is based on
checksum encoding.

Preservation-restoration consists of the following components:

e Preservation: Select uncorrupted data to preserve in a “safe”
store.

e Detection: During computation, check for violations of ex-
pected invariants.

e Recovery: When errors are detected, restore the correct data
from the store, and rollback the computation to the last cor-
rect stage.

Preservation methods enjoy generality. They can be applied to any
algorithmic structure, but they require a safe store. The safe store
may fail, but store must be available for recovery. A fault detected
by the preservation method must not cause a failure of the safe
store. Several software packages implement a safe store. In our
work, we use Containment Domains (CDs) [16]. Zheng [21] uses
GVR [17]. We chose CDs because they provide a composable,
hierarchical means for preservation, as well as local recovery. This
matches well with the nature of our hierarchical algorithms, our
applications, and the deep hierarchies expected in future exascale
platforms.

Checksum encoding matrices, introduced by Huang and Abra-
ham [6], consists of the following components:

e Encoding: Additional (redundant) data is added in some form
of encoding.

e Processing: Redesign of algorithm to operate on encoded
data.

e Detection: Check the encoded data for errors.

e Recovery: Correct identified errors from the encoding infor-
mation.

This technique is used in FT-ScaLAPACK [19], for dense matrix
operations, such as MM, LU and QR factorization.

Checksum encoding methods provide self-recovery — the (com-
puted) encoded data provides sufficient information for error dec-
tion and correction. There is no need for a safe store, therefore no
other software support is required. The main drawback of these ap-
proaches is that only limited error patterns can be corrected. For
example, in Huang’s MM row/column checksum scheme, only one
error per row or column can be corrected. In some cases, the algo-
rithm can detect more errors, but cannot recover. In order to toler-
ate more errors, more encoded data is needed, which may be costly
both in memory and in runtime. A second drawback is that the
checksum encoding, detection and recovery methods are specific
to particular algorithms. A new FT scheme needs to be designed
and proved mathematically for each new operation.
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Figure 1: HSS representation of A, HSS tree

2.2 HSS matrix-vector multiplication: HSSmv

The HSS structure of a matrix A can be represented as a recur-
sive structure through a telescoping factorization [11]:

A© — O 6))
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where the matrices U<l), V® and B® are block diagonal matrices
at each level . The superscript [ refers to the level number in the re-
cursion. We will omit it in writing when there is no ambiguity in the
context. The number of levels, L, is a tunable parameter. The recur-
sive structure is illustrated in Figure 1, which shows how matrix A
is partitioned. The {U, V, B} generators at each level of the parti-
tion are associated with the HSS tree nodes on the right. At the [-th
level, there are 2 nodes in the HSS tree (I = 0 at the root). We use
Ug) to denote one of the diagonal blocks of U () agsociated with
node 7 at level [ of the tree. Thus, U = diag(Ul(l), e UQ(f)).

This is similarly defined for block diagonal matrices V') and B(".

One key advantage of the HSS structure over other non-hierarchical
structures is the use of nested bases. That is, at any intermediate
node 7 in the HSS tree, the actual basis U. E 12 is not stored explicitly,
but only represented as the unevaluated product of the bases of the
children (v1 and v2) and the node 7’s (small) basis U, as follows:
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where U, is written as [R,, R.,]”. In this notation, only the basis
matrix U, without superscript “big” is explicitly stored. Here, R,,
and R,, are the two (stored) components of the basis matrix U,
each of which is of size 7 X r, with 7 being the numerical rank of
the block. For simplicity of the cost analysis in this paper, we use
the maximum rank of all the blocks, which is called HSS-rank. Our
code allows for variable ranks with different blocks [12].

With this hierarchical, unevaluated product representation, the
stored basis matrices are asymptotically smaller than U, and the
compression results at the children are reused at the parent node,
hence also reducing operation count asymptotically.

Our HSS construction algorithm uses randomized sampling and
the Interpolative Decomposition, which is an efficient way to obtain
a low-rank approximation of the form A, ., =~ U, By, .,V for
each off-diagonal block. The number of sampling (random) vectors
needs to be slightly larger than the maximum rank r, e.g., r + 10
is sufficient, see [11] for details. The implementation we use is
from [12], where an adaptive algorithm was developed when r is
not known a priori.



Algorithm 1 HSSmv—multiplication of an HSS matrix with a
dense vector.

Input: all generators U, V-, By, v,, and D. of an HSS matrix A,
a dense vector x.

Output: b = Azx.

1. For every leaf node 7, calculate
T, =V x(l;) (®)]

2. Looping over all non-leaf nodes 7, from finer to coarser, cal-
culate

i =V [ T } )

LTy

3. For the root node 7, compute
BVl sV2

l}”l _ 0 f1’1
by, | | Buww O F

4. Looping over all non-leaf nodes 7, from coarser to finer, cal-
culate

[ Z: } = { By?m Braws ] { i } +Usby ()
where 11 and v5 are the children of 7.
5. For every leaf node 7, calculate
b(I,) = Urb, + Drz(I). ®)

Using the HSS structure of A, the product b = Az can be evalu-
ated with Algorithm 1. The procedure involves one pass up the tree,
multiplying the V' generators, followed by one pass going down the
tree, multiplying the {U, B} generators. The computational com-
plexity of HSSmv is O(nr) [11].

In the following two subsections, we describe our approaches to
making Algorithm 1 resilient to failures. We expect the HSSmv
algorithm to be used repeatedly in an iterative solver. Errors may
occur in this long stretch of computation.

We make the following assumptions in our ABFT algorithms:

e The HSS construction is computed correctly.'

e Checksums are computed correctly at the initial stage.

e During computation, both matrix data and checksums are
susceptible to SDC.

2.3 FT-HSSmv via preservation-restoration

When using the preservation-restoration model two questions
need to be answered: (1) What data must be preserved? Our objec-
tive is to protect against SDC in the HSS matrix, so we preserve all
the U, V, B and D blocks of the HSS tree. The meta-data associ-
ated with the tree is much smaller than the data and therefore less
likely to be effected by uniformly distributed errors, so we chose
not to preserve the HSS meta-data. (2) What invariant conditions
can we check? All of our algorithms rely on the invariance of ma-
trix multiplication with respect to associativity. In particular, for
any two vectors p and ¢, (p*A)q = p*(Agq). For dense matrices,
the methods of Huang and Abraham [6] can be applied directly.
For HSS matrices, we introduce related checksum tests that can be

"Interpolative decomposition is also susceptible to errors. We in-
tend to design FT algorithms for HSS construction in our future
work.

>The checksum encoding scheme in section 2.4 could be used to
justify this assumption.
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verified at different stages of the HSSmv algorithm. By including
or excluding some intermediate tests, we can explore the trade-offs
between overhead costs for checking and preservation and error-
induced costs for restoration and error correction. Below, we de-
scribe the checksum tests and associated costs of coarse, medium
and fine-grained error checking algorithms.

2.3.1 Coarse-grained approach

In this approach, we perform correctness checking only at the
end of Algorithm 1. To prepare for coarse-grained checking, we
precompute a checksum vector ¢* = e* A immediately after the
HSS construction, where e is a vector of all ones. The procedure
for computing c is a simple adaptation of HSSmv in Algorithm 1
in which we sweep through the telescope factorization from left to
right. At the end of the calculation (following Step 5), we check
that c*xz = e*b. If this is not satisfied, we restore the entire HSS
matrix, (i.e., all the {U, V, B, D} generators), and restart the algo-
rithm from Step 1.

The memory overhead for this coarse-grained error check is small—

we need only one vector c of size n. The drawback is the long time
to recover from errors; this is especially important on systems with
high error rates.

2.3.2  Medium-grained approach

The medium-grained approach adds two checks to the coarse-
grained version. The two additional checks verify that the interme-
diate quantities Z, are computed correctly and are performed after
Step 1 and Step 2 of Algorithm 1 respectively.

The checksums used to validate 7 are based on the observation

that
FAONSEE VAOLENEE VAC Tt kel VACO LSS VA 55(“'1)’

where &) is the concatenation of all , on level of the HSS tree.

Suppose we introduce a weight vector w. (In practice, w can be a

vector of all ones.) We pre-compute the intermediate check vectors

at each level [:
= (1)
w

_ w*V(O)* o V(lfl)* _ w(l*l)*v(lfl)*

)

By associativity of multiplication, we obtain the following invari-
ant condition for any level [:

d V77D = (v Oy O
= (VO Dy O
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T
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Furthermore, a partial w-z checksum holds for a subset of nodes:

>

vEdescendants of T

wﬁ”*ii” _ wy’>*x£”>, for some I’ > 1.

Note that the sum over v is not over all descendents of 7, but only
a set of descendants at the same level I’

Algorithm 2 is the medium-grained FT HSSmv algorithm. The
text in blue highlights the error detection/recovery procedures. Af-
ter Steps 1 and 2, the checks are performed using the precomputed
check vectors w. The third check, after Step 5, uses the precom-
puted c check vector introduced for the coarse algorithm.

Memory is needed for the check vectors w at all levels of the
HSS tree. Denote r as the HSS-rank, and b as the block size at the
finest level partition. At each level , there are 2! vectors of size 7
each. The memory required for the check vectors is:

L
T Z 2~ 28T = 2rn /b,
=1



Algorithm 2 FT-medium-HSSmv: HSSmv with error detec-

tion/recovery at leaves and root.

Input:
e all generators U, V;, By, v,, and D, of HSS matrix A,
e adense vector x,
e precomputed checksum vector ¢* = e* A and the weighted
check vectors @ in Eqn. (9).

Qutput:
e b = Ax. Errors are recovered after the leaf-node calcula-
tions, after the root-node calculation, and after the final cal-
culation.

1. For every leaf node 7, calculate

iy = Via(I,) (10)

(D) 5

- (L+1)*
:'wi ) Tr, Tr.

pT qT = ,II)

If p- # g~ then restore V. for all leaves and return to step 1.

2. Looping over all non-leaf nodes 7, from finer to coarser, cal-
culate

5=V [ i } )

Lugy

(L+1)*

Atroot T, compute pr = W, Tr,Qr = oM Tr.

If p- # ¢- then restore V- for all non-leaf nodes and return

to step 2.
3. For the root node 7, compute

by | [ 0 Buw ][ &
b}/2 - Bul,u2 0 1'1/2

4. Looping over all non-leaf nodes 7, from coarser to finer, cal-
culate

Byl 0 Bu1 vo i‘ul 7
b = ' - U:br (12
i = Lo P 2]t 0o
where v1 and v» are the children of 7.
5. For every leaf node 7, calculate
b(I,) = Urbs + Drx(I,). (13)

Let ¢* = e*A be the precomputed checksum vector. If
c*x # e*b then restore U, and B,, ., for all nodes and
return to Step 3.

In addition, a vector of size n is needed to store the column check-
sum vector ¢ = e* A. Therefore, the total storage required for the
medium-grained approach is n + 2rn/b.

2.3.3 Fine-grained approach

In the fine-grained approach, we verify correctness of the matrix-
vector product for each operation involving the {U, V, B} genera-
tors. To do so, we associate a column checksum vector with each
block, e.g., e*U,. During the matrix-vector multiply operation, af-
ter we compute each product Uz, we test the invariant condition
(e"Ur)x = e*(Urz). If this is not violated, the U, block is re-
stored, and the computation is repeated.

The storage used by the checksum vectors can be calculated as
follows. Additional storage is required for each matrix {U, V, B, D}.
For the blocks in V/, at the bottom level L, we need 2” vectors of

size b = n/ 2L each (total is n). At the intermediate levels [ < L,
we need 2! vectors of size 2r each. Summing up all the intermedi-

ate levels:
L—1

2r Z 2~ 2r2" = 2rn/b.

=1

Adding the above two, we find the total checksum memory for the
V components is: n + 2rn/b. Going down the tree for the B
components, at each level [, need 2!=1 vectors of size 2r each, for
a total of

L
27’22l71 ~2rn/b.

=1

For the U components at each level I, we need 2 vectors of size 7
each, so the storage required is:

L—1
r Z 2" ~rn/b.
=2

Finally, at bottom level for D, the total storage is n. Adding all the
above, the total size of the checksum vectors for the fine-grained
approach is 2n + 5rn/b.

2.4 FT-HSSmv via checksum encoding

In the HSSmv algorithm, the basic building block is a dense
matrix-vector product, where the dense matrices are the {U-, V-, B, }
generators associated with the HSS tree nodes. We devised a generic
ABFT matrix-matrix product algorithm that uses Huang-Abraham’s
checksum encoding [6], but adapted to tolerate SDC in the input
matrix.

Consider GEMM C = A x B.> We augment the matrix A with
column sum encoding, A. = (A;[e* A]), and the matrix B with
row sum encoding, B, = (B [Be]). Here, we use the square
bracket [ - -] to denote the checksum encodings that are precom-
puted correctly. Carrying on the multiplication with A. and B,
we obtain the full checksum matrix

o= 2

A A[Be] ) '

[e* A][Be]

Assume that A is corrupted from silent errors, becoming A, but B
is still correct. Then, the erroneous calculation results in
G = ( AB A[Be] )
cs — * * M
[e*A]B [e*A][Be]

After the computation, we proceed with the following three steps
to handle potential errors. First, we compute the column sum of
AB and compare this sum vector with the last row of C.s, (i.e.,
[e* A]B). If the two vectors exceed a prescribed threshold, we
conclude some entries of A are incorrect. Second, given the cor-
rectly precomputed row checksum Ae and column checksum e* A,
Steps 1-4 of Algorithm 3 correct up to one error per row (or col-
umn) of A. Step 5 updates C'CS to reflect the corrections to A.

Compared to the preservation-restoration methods in prevision
section, this FI-GEMM has the potential to correct a limited num-
ber of errors more efficiently than recomputing the entire result.
The full-checksum encoding approach requires both row- and column-
checksums and therefore requires roughly twice as much memory
for storing checksums as the fine-grained preservation scheme de-
scribed above, but does not require preserving a second “safe” copy
of the input matrix.

An noteworthy limitation of FI-GEMM is the restricted range of
errors from which it can recover. In particular, it can recover from

3B is a single vector in case of matrix-vector product.



Algorithm 3 Using checksum encoding to recover silent errors in
a matrix A and propagating corrections to the product C' = AB.
A [Ae] i
[e*A4] [e*Ae] } » oS-
sibly including errors as described above, this algorithm corrects
the erroneous elements of A if possible, and returns the number of
errors. An error code is returned if the errors A cannot be corrected.

Given a full checksum matrix A% =

1. Compute: 7 = Ae — [Aé],
Count: N, = number of nonzero elements in 7.
Record each nonzero row index i: p[j] =¢,0 < j < N,.

2. Compute: ¢* = e* A — [e* A]
Count: N. = number of nonzero elements in c.
Record each nonzero column index é: ¢[j] = 4,0 < j < N.

3. If N, # N, return error code for multiple errors per row or
column.

4. Co-locate the error at row p[i], column g[j]
fori =1: N,
forj=1: N,
if (r[p[¢]] = c[q[4]]), then recover:
Aptilals) = Aplit.ats) — r[pLE)
endfor
endfor

5. Propagate corrections from Ao C

fori=1:N,
forj=1: N,
if (r[p[é]] = ¢[q[4]]), then recover:
fork=1:Ng
Cpfit, ke = Coplit k. = TPl Bapj) k-
endfor
endfor
endfor

only one error per row or column.* However, both high efficiency
and strong resilience could be achieved by hybrid methods that first
attempt to recover using Algorithm 3 and resort to restoration when
necessary.

Table 1 summarizes the memory requirement for various HSSmv
algorithms presented in this section, including the extra storage
needed for the FT algorithms. The second column is the baseline
of the size of HSS matrix A itself. The next two columns contain
various checksum vectors and the data size in the safe store.

We also explored the possiblity of appending checksum rows to
matrices prior to HSS factorizatation. This approach does provide
an invariant condition, but the invariant is preserved only within
the interpolation error of the HSS factorization. Preliminary exper-
iments indicated that these error bounds were not tight enough to
permit efficient error detection.

3. IMPLEMENTATION AND EVALUATION

In this section, we discuss how we implement the new ABFT
algorithms and how we assess their performance.

3.1 Containment Domains

Containment Domains (CDs) provide an API for An efficient
implementation of our ABFT algorithms. CDs provide a software

A higher density of errors could be tolerated if additional check-
sum rows/columns were appended to the matrix.

23

Table 1: The storage requirement (in number of real values).
Notation: n is the matrix dimension, b is the block size at the
finest level partition, and r is the HSS-rank (assuming uniform
everywhere). The total size of {U, V, B} generators plus D is
M = 18r?n/b + nb. The variable s = rn/b is introduced for
brevity.

HSS Safe
matrix Checksum store Total
Without FT M 0 0 M
Coarse M n M-+n 2(M+n)
Medium M n+2s M+n+2s 2(M+n+s)
Fine M 2n+5s M+2n+45s  2(M+2n+5s)
Encoded M 4n+10s 0 M+4n+10s

layer to facilitate the preservation-restoration model, including nest-
ing control constructs, and durable storage. We used a newly de-
veloped, low-overhead implementation from UT Austin [16].

Containment domains are a programming construct that enables
applications to express, tune, and specialize error detection, state
preservation and restoration, and recovery to satisfy application
specific resilience needs [4]. The following features are attractive
for our algorithms. First, CDs respect the deep machine and appli-
cation hierarchies expected in exascale systems. This matches well
with our hierarchical algorithms. Second, CDs allow software to
preserve and restore state selectively within the storage hierarchy,
to support local recovery, which is desirable for large-scale applica-
tions, since it enables preservation to exploit locality of storage, and
rather than requiring every process to recover from an error, limits
the scope of recovery to only the affected processors. Third, since
CDs nest, they are composable. Errors can be completely encapsu-
lated, or escalated to calling routines through a well-defined inter-
face. Finally, the CD interfaces are flexible enough to tailor error
detection and recovery mechanisms to suit our needs. We can eas-
ily implement hybrid algorithms that combine both preservation-
restoration and data encoding. Thus, we need only a minimum
amount of rollback and re-execution.

Algorithm 4 lists the pseudo-code including the calls to the CD
routines for Step 1 of the FT-medium-HSSmv algorithm (Algo-
rithm 2).

3.2 Performance metrics for resilience

The evaluation metrics for any fault-tolerant algorithm should
include the following: the runtime overhead incurred by the re-
silience mechanism when no fault occurs (failure-free overhead),
the runtime overhead when errors occur, as well as the memory
cost introduced for fault handling. For runtime analysis, we divide
the runtime of our algorithm into three states. A working state in-
dicates normal work (forward progress) of our algorithm, without
error checks. Failure-free overhead is represented by the checking
state, which indicates that the algorithm is performing preventive
action (checking), but no error was detected. We account for fault
handling time in the recovering state, which includes both time
spent detecting an error, and the time recovering from failures. We
use the fraction of time spent working as our main performance
metric.

We describe the performance of our algorithms with a vector
II = (Uw, IR, II¢c), where the subscripts W, R, and C' denote
the working, recovering, and checking states, and each component
I1; represents the fraction of time that the system is in the state 3.
Errors occur at random times, so the transitions among states form
a stochastic process. A statistical model, such as a continuous-time



Algorithm 4 Details of Algorithm 2 Step 1 including CDs.

Input:
e V. generators for leaf-nodes of HSS matrix A,
e a dense vector x
e weighted check vectors @) in Eqn. (9)
Output:
o 7L — (L),
Errors are recovered after the leaf-node calculations.

1. CD_Begin()

2. //Preserve selected data for this CD.
For every leaf node, 7:
CD_Preserve( V; )

3. For every leaf node, 7, calculate:
T, = Vix(l;)

pPr = U~)7<-L+1)*m7'a qr = Uj(L)*j‘r-

4. //If the assertion fails, control returns to CD_Begin.
//On second pass, CD_Preserve will restore data.
CD_Assert( pr = gq- )

5. CD_Complete( )

Working

T/(1-T/m)
(Work time T)

Recovering

(Test and fix)

Checking

(Test and pass)

Figure 2: State transition diagram.

Markov chain, can be used to estimate the performance of such sys-
tems, by associating a transition rate with each allowed transition
between states. The system remains working state for an average
time 7', after which it performs error-related work. Errors are dis-
covered at a rate of 1/m. In the Markov model, m represents the
mean time spent in the working state before an error is found. It
takes a time c to test for an error (check), and a time f to recover
from (fix) an error. The time f includes any time for reloading
data, performing rework, or correcting errors. When multiple re-
covery trials are necessary, perhaps due to errors during recovery,
we incorporate these effects in this model by increasing f. If we
use these rates in a Markov model of our finite-state machine, and
solve for the steady-state probabilities, then we find:

_(m f4+c (m/T)c—c
H‘(ﬁ’z)’ D )
D=m+ f+ (m/T)c

(14)
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Figure 3: Runtime overhead for fault-tolerant HSSmv algo-
rithms is smaller than the system’s natural performance vari-
ation. Red markers are averages over eight runs. The fastest
and slowest runs are indicated with vertical lines. Boxes show
the standard error.

If no failures occur, then m > T, and from (3.2)

T c
I=(—,0
(T—&—c7 7T—i—c)’

which matches what we expect intuitively. In the failure-free case,
we spend no time recovering (IIr = 0), but experience some slow-
down due to spending c out of every ¢ + 7' cycles running checks.
On the other hand, suppose every check fails, then m = T, and
from (3.2) we find that

T f+c
= , ,0).
<T+f+c T+f+ec )

The system executes for a time " before being taken out of service
for a time f + c for recovery. The quantity ITy is analogous to the
availability metric A used in two-state maintenance models. Noting
that f + c is the mean time for repairs (MTTR), and m is a mean
time to fail (MTTF), from the first component of (3.2) we recover
the familiar expression A = MTTF/(MTTF + MTTR).

15)

(16)

4. RESULTS AND DISCUSSION

We tested our FT HSSmv algorithms by injecting errors into the
HSS factors at random times during the HSSmv operation. Be-
fore the HSSmv iterations begin, we register every U, V, B and D
block with an ErrorInjector class. When matrix encoding is used,
the entire encoded matrix is registered. The error injection mod-
ule schedules 1,000 errors with frequencies sampled from an ex-
ponential probability distribution and memory locations uniformly
distributed across the registered arrays. During the iterations, er-
rors injection is triggered according to the schedule by comparing
the current time to the schedule after each preserve call (or block-
mv when matrix encoding is used). A new schedule is generated
whenever the previous schedule is completed.

Our initial (uncompressed) matrix was a square H-matrix with
side lengths of 20,000, generated for each off-diagonal block with
rank of 5% of its size. The HSS construction used 1,000 random
sampling vectors. The relative error in the matrix L°° norm due to
compression of 107 !°. We then performed 10,000 iterations of the
HSSmv algorithm, each with a different random vector.
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Figure 4: The runtime of fault-tolerant HSSmv algorithms in-
creases with error rate. Fine-grained error checking minimizes
recovery costs.

Figure 3 shows the runtime overhead for each FT algorithm when
no errors are injected. Encoded+coarse is a hybrid method that uses
matrix encoding as its primary fault tolerance mechanism and re-
sorts to coarse-grained restoration when FT-GEMM is unsuccess-
ful. Note that these timings include only the HSSmv iterations and
exclude a) the time to construct the HSS matrix (167 s), b) the time
to store a nonvolatile copy of the HSS matrix (0.2 s), and ¢) time
to precompute the checksum arrays (0.2 s). In every case, the ad-
ditional costs for data preservation and error checking are less than
2% of the runtime without FT (labeled “None” in the figure). Run-
time overhead for the fine-grained CDs is higher than the others,
but is nevertheless small—nearly within the natural performance
variation of the system. Figure 3 also lists in parenthesis, the total
memory used by each algorithm. Memory use doubles when CDs
are used because an additional copy of the matrix required for re-
covery. The fine-grained matrix encoding algorithm requires only
1% more memory than the non-resilient algorithm, but is somewhat
less robust than using CDs (see Section 2.4).

The fine-grained error checking provided the best performance at
high error rates. Figure 4 shows that the runtime of the coarse- and
medium-grained FT algorithms increased steeply when the error
rate exceeded the HSSmv iteration rate. At the highest error rate
tested (1 per second), performance of the coarse-grained algorithm
is roughly half that of the fine-grained CD and encoding schemes,
which are nearly the same speed as the unprotected algorithm.

To extend our measurements to lower, more realistic error rates,
we analyzed our timing data using a Markov model. During the
runs described in Figures 3 and 4, we logged the value of gettimeof-
day for each error injection event or transition between work, check
and recovery states of the FSM. We then post-processed this log to
determine the total time in each state and the transition rate between
states. Figure 5 compares the fraction of the total time spent in the
working state as measured by the log files to the fraction predicted
by the Markov model using the transition rates from the runs with
1072 errors/second. Agreement between the two is excellent at low
error rates. At higher error rates, errors may be injected during the
recovery state and, when detected, cause reentry into the recovery
state. This relationship between the recovery rate and the error rate
is not accounted for by the three-state Markov model and explains
the diminishing fidelity of the model at higher error rates.

S. RELATED WORK

Earlier work with ABFT for dense linear systems includes Huang’s

checksum encoding schem for error detection and recovery for ma-
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Figure 5: Efficiency of fault-tolerant algorithms as measured
(points) and as predicted by the Markov model (lines).

trix multiplication [6]. Chen used distributed checksums to enable
tolerance of fail-stop failures on distributed systems [3]. Matrix
encoding techniques were extended to LU and QR decompositions
by Luk and Park, who used low-rang updates to acheive fast error
recovery [10, 9]. This was applied to distributed parallel LU de-
composition by Du [5]. FT algorithms have also been developed
for two-sided decompostions such as Hessenberg reduction [7] and
bidiagonal reduction [8].

A growing volume of work incorporates FT into iterative solvers
with sparse matrices. Bronevetsky and de Supinski combined ABFT
for encoding and detecting errors with checkpoint based recovery
to tolerate errors in sparse iterative methods [2]. Shantharam de-
veloped a checksum encoding scheme to detect errors in sparse
matrix-vector multiplication and triangular solve operations, and
used these to construct a FT PCG solver [13]. Zhang combined
an inner-outer solver (that is relatively insensitive to faults during
inner iterations) with preservation-restoration techniques to build a
FT iterative solver [21].

Our work is distinguished from other FT algorithms by its fo-
cus on the HSS matrix format and the use of CDs to perform fine-
grained error correction within the HSSmv operation.

6. CONCLUSIONS AND FUTURE WORK

Our data shows that FT-HSSmv algorithms effectively handle
errors at high error rates, about one error per second. Since the
failure-free overhead of our algorithms is small, the overall run-
time overhead when failures do occur remains small until the time
between errors approaches the recovery time of the algorithm. We
showed that the additional runtime costs of medium-grained and
fine-grained error checking are small. Our analysis of these re-
sults with the Markov model shows that we can identify the lim-
its of these algorithms’ effectiveness by performing measurements
at low error rates, and extrapolating these results to higher error
rates. Finally, our experience developing these algorithms shows
that the preservation methods are robust and straightforward, at the
expense of requiring a form of safe storage, whereas the encod-
ing techniques require no safe storage, but required changes to data
structures and modifications to the algorithms to ensure that the ad-
ditional encoding information is maintained.

We next speculate about what our results imply for making paral-
lel HSSmv algorithms [12, 18] resilient. In a parallel HSS construc-
tion, the HSS blocks are distributed across processors. The steps in
Algorithm 2 remain essentially unchanged. The coarse method,



for example, only requires collective agreement of the checksum
conditition at the last step, even though pairwise exchanges are re-
quired at the non-leaf nodes to propagate the results between levels.
As aresult, we expect the error detection and recovery methods de-
scribed here to be directly applicable. Further, we expect the com-
putational and preservation costs for SDC detection to be similar,
and the total rate of all (parallel) SDCs to be of the same order, a
few seconds, as the rates described in this paper.

In the future, we will develop fault-tolerant algorithms for the
other HSS matrix operations, including HSS construction and ULV
factorization. Since all these algorithms follow the same HSS tree
structure, our hierarchical style preservation-restoration can be em-
ployed in a similar fashion, but new invariant conditions must be
developed for effective error detection.
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