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Abstract. Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in
constructing the superfast direct solvers for both dense and sparse linear systems. Here, we deve-
lope a set of novel parallel algorithms for the key HSS operations that are used for solving large
linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions
with hierarchical compression, the ULV HSS factorization, and the HSS solutions. The HSS tree
based parallelism is fully exploited at the coarse level. The BLACS and ScaLAPACK libraries are used
to facilitate the parallel dense kernel operations at the fine-grained level. We have appplied our
new parallel HSS-embedded multifrontal solver to the anisotropic Helmholtz equations for seismic
imaging, and were able to solve a linear system with 6.4 billion unknowns using 4096 processors, in
about 20 minutes. The classical multifrontal solver simply failed due to high demand of memory.
To our knowledge, this is the first successful demonstration of employing the HSS algorithms in
solving the truly large-scale real-world problems. Our parallel strategies can be easily adapted to
the parallelization of the other rank structured methods.
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struction, direct solver

AMS subject classifications. 15A23, 65F05, 65F30, 65F50

1. Introduction. In recent years, rank structured matrices have attracted much
attention and have been widely used in the fast solutions of various partial differential
equations, integral equations, and eigenvalue problems. Several useful rank structured
matrix representations have been developed, such as H-matrices [15, 18, 16], H2-
matrices [4, 5, 17], quasiseparable matrices [1, 10], and semiseparable matrices [6, 24].

Here, we focus on a type of semiseparable structures, called hierarchically semisep-
arable (HSS) forms, in the context of fast direct solvers for linear systems. Key ap-
plications of the HSS algorithms, coupled with the sparse matrix techniques such as
the multifrontal solvers, have been shown very useful in solving certain large-scale
discretized PDEs and computational inverse problems [25, 29]. For example, they can
be built into parallel sparse solvers for Helmholtz equations arising from frequency
domain wave equation modeling prevailing in the oil and gas industry. In particular,
we point out an application to the multi-frequency formulation of (seismic) inverse
scattering and tomography, where a Helmholtz equation has to be solved for many
right-hand sides, on a large domain for a selected set of frequencies. The solutions are
combined to compute one step in, for example, a nonlinear Landweber iteration. The
computational accuracy can be controlled, namely, in concert with the accuracy of
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the data. The HSS methods can be used to obtain fast approximate direct solutions
and have been shown very useful for such problems [25, 26].

An HSS representation has a nice binary tree structure, called the HSS tree, and
the HSS operations can be generally conducted following the traversal of this tree in
a parallel fashion. However, the existing studies of the HSS structures focus only on
their mathematical aspects, and the current HSS methods are only implemented in
sequential computations. Similar limitations also exist for some other rank structured
methods.

Here, we present the new parallel and efficient HSS algorithms and study their
scalability. We concentrate on three most significant HSS algorithms: The parallel
construction of an HSS representation or approximation for a dense matrix using a
parallel rank-revealing QR (RRQR) factorization, the parallel ULV-type factorization
[7] of such a matrix, and the parallel solution. The complexity of the HSS construction,
factorization, and solution algorithms are O(rn2), O(r2n), and O(rn), respectively,
where r is the maximum numerical rank and n is the size of the dense matrix [7, 30].
Here, we further discuss the scalability of these algorithms. Since the HSS algorithms
mostly consist of dense matrix kernels, we use BLACS [3] and ScaLAPACK [23] as the
parallel building blocks for those kernels. We construct a context (sub-communicator)
for each node of the HSS tree. We also exploit the governing 2D-block-cyclic data
distribution scheme used in ScaLAPACK to achieve high performance.

Our parallel HSS construction consists of three phases: parallel RRQR factor-
ization based on a Modified Gram-Schmidt (MGS) method with column pivoting,
parallel row compression, and parallel column compression. The parallel HSS factor-
ization involves the use of two children’s contexts for a given parent context. The
communication patterns are composed of intra-context and inter-context ones. Sim-
ilar strategies are also applied to the HSS solution. In the presentation, some tree
techniques for symmetric positive definite HSS matrices in [31] are generalized so as
to efficiently handle nonsymmetric matrices in parallel.

Analysis of the communication costs in these procedures are presented. For ex-
ample, in the HSS construction, the number of messages and the number of words
transferred are O(r log2 P+logP ) and O(rn logP+r2 log2 P+rn), respectively, where
P is the number of processes and the logarithm is in base two. In our numerical ex-
periments, we confirm the accuracy and the weak scaling of the methods when they
are used as kernels for solving large 2D and 3D Helmholtz problems. We also demon-
strate their strong scaling for a large dense Toeplitz matrix. The results show that
our algorithms achieve high performance when the system is scaled up to 6.4 billion
unknowns.

The outline of the paper is as follows. In Section 2, we present an overview of HSS
structures. The fundamental parallelization strategy and the performance model are
introduced in Section 3, where we also briefly discuss our use of BLACS and ScaLAPACK

to implement the high performance kernels. In Section 4, we present our parallel HSS
construction framework. The parallel HSS factorization is described in Section 5. In
Section 6, we discuss the parallel solution strategy. Some computational experiments
are given in Section 7.

2. Overview of the HSS structures. We briefly summarize the key concepts
of the HSS structures following the definitions and notation in [27, 30]. Let A be a
general n × n real or complex matrix and I = {1, 2, ..., n} be the set of all row and
column indices. Suppose T is a postordered full binary tree with 2k−1 nodes labeled
as i = 1, 2, . . . , 2k− 1, such that the root node is 2k− 1 and the number of leaf nodes
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is k. That is, for each non-leaf node i of T , its left child c1 and right child c2 satisfy
c1 < c2 < i. Let ti ⊂ I be an index subset associated with each node i of T . We
use A|ti×tj to denote the submatrix of A with row index subset ti and column index
subset tj . Then a postordered HSS form is defined as follows:

Definition 2.1. We say A is in a postordered HSS form with the corresponding
HSS tree T if the following conditions are satisfied:

• tc1 ∩ tc2 = ∅, tc1 ∪ tc2 = ti for each non-leaf node i of T with children c1 and
c2, and t2k−1 = I.

• There exist matrices Di, Ui, Ri, Bi,Wi, Vi (called HSS generators) associated
with each node i of T , such that

D2k−1 = A, U2k−1 = ∅, V2k−1 = ∅,

Di = A|ti×ti =

(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)
, (2.1)

Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,

where the superscript H denotes the Hermitian transpose.
The HSS generators define the HSS form of A. For each diagonal block Di =

A|ti×ti associated with each node i of T , we define A−i = A|ti×(I\ti) to be the HSS

block row, and A
|
i = A|(I\ti)×ti to be the HSS block column. They are both called HSS

blocks. The maximum numerical rank r of all the HSS blocks is called the HSS rank
of A. If r is small as compared with the matrix size, we say that A has a low-rank
property.

Figure 2.1 illustrates a block 8× 8 HSS representation A. As a special example,
its leading block 4× 4 part looks like:

A|t7×t7 =


(

D1 U1B1V
H
2

U2B2V
H
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) (
U1R1

U2R2

)
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Fig. 2.1. Pictorial illustrations of a block 8× 8 HSS form and the corresponding HSS tree T .

Given a general dense matrix A with the low-rank property, we can construct an
HSS representation in parallel (or approximation when compression is used), upon
which the HSS factorization and solution are conducted.
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3. Parallelization strategy. For ease of exposition, we assume that all the di-
agonal blocks associated with the leaf nodes have the same block size m. We choose
m first, which is related to the HSS rank, and then choose the HSS tree and the
number of processes P ≈ n/m. For simplicity, assume P is a power of two. Some
existing serial HSS algorithms traverse the HSS tree in a postorder [27, 30]. For the
HSS construction, the postordered traversal allows us to take advantage of previously
compressed forms in later compression steps. However, the postordered HSS con-
struction is serial in nature and involves global access of the matrix entries [30], and
is not suitable for parallel computation. To facilitate parallelism, we reorganize the
algorithms so that the HSS trees are traversed level by level. The complexity remains
roughly the same. In fact, for HSS constructions, although the flop count with the
levelwise traversal is slightly higher than with the postorder traversal, the leading
terms in the counts are the same.

All the parallel operations are performed in either an upward sweep or a downward
sweep along the HSS tree T . We refer to the leaf/bottom level of the tree as level
1, and the next level up as level 2, and so on. We use the example in Figure 2.1
to illustrate the organization of the algorithms. The matrix is partitioned into eight
block rows (Figure 3.1). We use eight processes {0, 1, 2, 3, 4, 5, 6, 7} for the parallel
operations. Each process individually works on one leaf node at level 1 of T . At the
second level, each group of two processes cooperate at a level-2 node. At the third
level, each group of four processes cooperate at a level-3 node, and so on.
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7

nodes
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12 {1}{0} {2} {3} {4} {5} {6} {7}

{0,1} {2,3} {4,5} {6,7}

{4,5; 6,7}{0,1; 2,3}

{0,1,2,3; 4,5,6,7}

Level
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4

Fig. 3.1. A block partition of a dense matrix A before the construction of the HSS form in
Figure 2.1, where the labels inside the matrix and beside the nodes show the processes assigned to
the nodes of the HSS tree in Figure 2.1.

3.1. Using ScaLAPACK and BLACS. Since the HSS algorithms mostly consist of
dense matrix kernels, we chose to use where possible the well established routines in
the ScaLAPACK library [23] and its communication substrate, the BLACS library [3].
The governing distribution scheme is a 2D block cyclic matrix layout, in which the
user specifies the block size of a submatrix and the shape of the 2D process grid. The
blocks of the matrices are then cyclically mapped to the process grid in both row and
column dimensions. Furthermore, the processes can be divided into subgroups to work
on independent parts of the calculations. Each subgroup is called a context in BLACS

term, similar to the sub-communicator concept in MPI [22]. All our algorithms start
with a global context created from the entire communicator, i.e., MPI COMM WORLD.
When we move up the HSS tree, we define the other contexts encompassing process
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subgroups.
For example, in the example shown in Figures 2.1 and 3.1, the eight processes

can be arranged as eight contexts for the leaf nodes in T . Use {0, 1} ↔ node 3 to
denote a context, which means that the set of processes {0, 1} is mapped to node 3.
Four contexts are defined at the second level:

{0, 1} ↔ node 3, {2, 3} ↔ node 6, {4, 5} ↔ node 10, and {6, 7} ↔ node 13.

Two contexts are defined at the third level:

{0, 1; 2, 3} ↔ node 7, {4, 5; 6, 7} ↔ node 14,

where the notation {0, 1; 2, 3}means that processes 0 and 1 are stacked atop processes
2 and 3. Finally, one context is defined:

[0, 1, 4, 5; 2, 3, 6, 7]↔ node 15.

We always arrange the process grid as square as possible, i.e., P ≈
√
P ×

√
P , and

we can conveniently use
√
P to refer to the number of processes in the row or column

dimension.
When the algorithms move up the HSS tree, we need to perform a redistribution

to merge the data distributed in the two children’s process contexts to the parent’s
context. Since the two children’s contexts have about the same size and shape (due to
the low-rank property) and the parent context roughly doubles each child’s context,
the parent context can be arranged to combine the two children’s contexts either side
by side or one on top of the other. Thus, the processes grid is kept as square as possible,
and the redistribution pattern is simple, which only involves pairwise exchanges. That
is, only the pair of processes at the same coordinate in the two children’s contexts
exchange data. For example, the redistribution from {0, 1; 2, 3} + {4, 5; 6, 7} to
{0, 1, 4, 5; 2, 3, 6, 7} is achieved by the following pairwise exchanges: 0 ↔ 4, 1 ↔ 5,
2↔ 6, and 3↔ 7.

3.2. Parallel performance model. We will use the following notation in the
analysis of the communication cost of our parallel algorithms:

• r is the HSS rank of A.
• The pair [#messages, #words] is used to count the number of messages and

the number of words transferred. The parallel runtime can be modeled as the
following (ignoring the overlap of communication with computation):

Time = #flops · γ + #messages · α+ #words · β ,

where γ, α, and β are the time taken for each flop, each message (latency),
and each word transferred (reciprocal bandwidth), respectively.

• The cost of broadcasting a message of W words among P processes is mod-
eled as [logP, W logP ], assuming a tree-based or hypercube-based broadcast
algorithm is used. The same cost is incurred for a reduction operation of W
words.

4. Parallel HSS construction. In this section we discuss the construction of
an HSS representation (or approximation) for A in parallel. Unlike the methods
in [28, 30], our discussions focus on the computational aspects and the performance
scalability. The construction is composed of a row compression step (Section 4.2)
followed by a column compression step (Section 4.3). The key kernel is a parallel
RRQR algorithm which we discuss first.
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4.1. Parallel RRQR factorization or compression. The key step in the
HSS construction is to compress the HSS blocks of A. For example, consider an HSS
block F . Truncated SVD is one option to realize such compression. That is, we
drop those singular values below a prescribed threshold of all the singular values of
F . SVD is generally very expensive. An efficient alternative is to use rank-revealing
QR (RRQR), where QR factorization with column pivoting is performed. We now
describe our parallel RRQR algorithm.

For notational simplicity, assume the numerical rank (determined by a given rel-
ative tolerance τ) is equal to the HSS rank r. Assume F is of size M × N , and is
distributed in the process context P ≈

√
P ×

√
P . That is, the local dimension of F

is M√
P
× N√

P
. The following algorithm, based on a Modified Gram-Schmidt strategy

which is revised from a RRQR factorization scheme in [13, 14], computes RRQR in

parallel: F ≈ Q̃T̃ where Q̃ = (q1, q2, ..., qr) and T̃H = (t1, t2, ..., tr). See Table 4.1.

subroutine [Q,T ] ≈ RRQR(F, τ)
for i = 1:r

1. In parallel, find the column fj of F with the maximum norm

2. Interchange fi and fj
3. Compute tii = ‖fi‖, and if tii/t11 ≤ τ, stop

4. Normalize fi: qi = fi/‖fi‖
5. Broadcast qi row-wise within the context in which F resides

6. PBLAS2: tHj = qHi (fi+1, ti+2, ..., fN )
7. Compute rank-1 update: (fi+1, ti+2, ..., fN )=(fi+1, ti+2, ..., fN )−qjtHj

end
Table 4.1

Parallel RRQR factorization of F with a relative tolerance τ , where the norm is 2-norm. (Note
that Step 2 is used for the clarity of explanation and is not done in actual computations. Also Step
3 is done quickly by the norm update strategy as in [13].)

Communications occur in Steps 1 and 5. The other steps only involve local com-
putations. In Step 1, the processes in each column group perform one reduction of size
N√
P

to compute the column norms, with communication cost [log
√
P , N√

P
log
√
P ].

This is followed by another reduction among the processes in the row group to find the
maximum norm among all the columns, with communication cost [log

√
P , log

√
P ].

In Step 3, the processes among each row group broadcast qj of size M√
P

, costing

[log
√
P , M√

P
log
√
P ].

Summing the leading terms for r steps, we obtain the following communication
cost:

CommRRQR =

[
log
√
P ,

M +N√
P

log
√
P

]
· r . (4.1)

To achieve higher performance, a block RRQR strategy can be adopted similarly,
like the LAPACK subroutine xGEQP3 [20].

4.2. Parallel row compression stage. We still use the block 8× 8 matrix in
Figures 2.1 and 3.1 to illustrate the algorithm step by step.

4.2.1. Row compression – level 1. In the first step, all the leaves 1, 2, 4, 5, 8,
9, 11, and 12 of T have their own processes {0}, {1}, {2}, {3}, {4}, {5}, {6}, and {7},
respectively. Each process owns part of the global matrix A, given by Di = A|ti×ti
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and A−i = A|ti×(I\ti), as illustrated in Figure 3.1. The block to be compressed is

Fi ≡ A−i . We perform a parallel RRQR factorization (Section 4.1) on Fi:

Fi ≈ UiF̂i.

For notational convenience, we write F̂i ≡ A|t̂i×(I\ti), which can be understood as

that F̂i is stored in the space of Fi, or in A with row index set t̂i. That is, we can
write the above factorization as1

A|ti×(I\ti) ≈ UiA|t̂i×(I\ti). (4.2)

This step is done locally within each process. One of the HSS generators Ui is obtained
here.

We also prepare for the compression at the upper level, level 2 of T . The upper
level compression must be carried out among a pair of processes in each context at
level 1. For this purpose, we need a redistribution phase prior to the compression.
That is, we perform pairwise exchange of data: {0} ↔ {1}, {2} ↔ {3}, {4} ↔ {5},
and {6} ↔ {7}. The level-2 nodes on T are 3, 6, 10, and 13, whose contexts are
{0, 1}, {2, 3}, {4, 5}, and {6, 7} respectively. For each node i at level 2 with children
c1 and c2 (at level 1), we have

A|tc1×tc2 ≈ Uc1A|t̂c1×tc2 , A|tc2×tc1 ≈ Uc2A|t̂c2×tc1 , A
−
i ≈

(
Uc1A|t̂c1×(I\ti)
Uc2A|t̂c2×(I\ti)

)
.

Ignoring the basis matrices Uc1 and Uc2 , the block to be compressed in the next step
is

Fi ≡

(
A|t̂c1×(I\ti)
A|t̂c2×(I\ti)

)
. (4.3)

This procedure is illustrated in Figure 4.1(a). Two communications steps are used.
First, exchange A|t̂c1×tc2 and A|t̂c2×tc1 between c1’s and c2’s contexts. This prepares

for the column compression later. Next, redistribute the newly merged off-diagonal
block Fi onto the process grid associated with the contexts {0, 1}, {2, 3}, {4, 5}, and
{6, 7} corresponding to nodes 3, 6, 10, and 13, respectively. Here we use a ScaLAPACK

subroutine PxGEMR2D to realize the data exchange and redistribution steps.
During the redistribution phase, the number of messages is 2, and the number of

words exchanged is rn
2 · 2. The communication cost is [2, rn

2 · 2].

4.2.2. Row compression – level 2. At level 2 of T , within the context for
each node i = 3, 6, 10, 13, we perform a parallel RRQR factorization for Fi in (4.3):

Fi ≈
(
Rc1

Rc2

)
A|t̂i×(I\ti), (4.4)

where A|t̂i×(I\ti) is defined similar to the one in (4.2). The R generators associated
with the child level are then obtained. Since the size of each Fi is bounded by 2r× n
and two processes are used for each RRQR factorization, we obtain the communication
cost [log

√
2, 2r+n√

2
log
√

2] · r using (4.1).

1This is only a way to simplify notation in the presentation, and is not the actual storage used
in our implementation.
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Fig. 4.1. Illustration of data distribution in the row and column compressions, where the labels
inside the matrix mean processes, and those outside mean the nodes of T .

To prepare for the compression at the upper level (level 3) of T , again, we need
a redistribution phase, performing the following pairwise data exchange: {0, 1} ↔
{2, 3} and {4, 5} ↔ {6, 7}. In this notation, the exchanges 0 ↔ 1 and 2 ↔ 3 occur
simultaneously. There is no need for data exchanges between processes 0 and 3, or
1 and 2. The level-3 nodes are 7 and 14 with the process contexts {0, 1; 2, 3} and
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{4, 5; 6, 7}, respectively. There are also communications similar to the procedure
for forming (4.3) in the previous step, so that each of the two off-diagonal blocks
Fi, i = 7, 14 is formed and distributed onto the respective process context. This is
illustrated in Figure 4.1(b).

During the redistribution phase, the number of messages is 2, and the number of
words exchanged is rn

22 · 2. Thus the communication cost is [2, rn
22 · 2].

4.2.3. Row compression – level 3. At level 3, we perform the parallel RRQR
within each context for each Fi, i = 7, 14, similar to (4.4). The R generators associ-
ated with the child level are also obtained here. The communication cost of RRQR
is given by [log

√
4, 2r+n√

4
log
√

4] · r.
Since the upper level node has only one node, the root node 15 of T , there

is no off-diagonal block associated with it. Thus, to prepare for the column HSS
constructions, only one pairwise exchange step is needed between the two contexts:
{0, 1; 2, 3} ↔ {4, 5; 6, 7}, meaning 0↔ 4, 1↔ 5, 2↔ 6, and 3↔ 7. This is similar to
(4.3) except that there is no merging step to form F15. The procedure is illustrated
in Figure 4.1(c). The communication cost in the redistribution phase is [2, rn

23 · 2].

4.2.4. General case and summation of communication costs in row com-
pression. In general, the compression and communication for an HSS matrix with
more blocks can be similarly shown. Here, we sum the messages and number of words
communicated at all the levels of the tree in this row compression stage. For sim-
plicity, assume there are P leaves and about L ≈ logP levels in T . Then the total
communication cost is summed up by the following:2

(1) Redistributions:

#messages =

L∑
i=1

2 ≈ 2 logP,

#words =

L∑
i=1

(
rn

2i
2) = O(2rn).

(2) RRQR factorizations:

#messages =

L∑
i=1

(log
√

2i) · r = r

L∑
i=1

i

2
= O(r log2 P ),

#words =
L∑

i=1

(
2r + n√

2i
log
√

2i) · r = r

(
2r + n

2

) L∑
i=1

i

2i/2
= O(rn logP ).

4.3. Parallel column compression stage. After the row compression, the
blocks A|t̂j×(I\tj) remained to be compressed in the column compression stage are

much smaller. In addition, in this stage, pieces of the blocks A|t̂j×(I\tj) for nodes j at
different levels may be compressed together to get a V generator. To illustrate this,
we use the following definition, which generalizes the concept of visited sets in [31] for
symmetric positive definite matrices to nonsymmetric ones.

Definition 4.1. The left visited set associated with a node i of a postordered
full binary tree T is

Vi = {j | j is a left node and sib(j) ∈ ances(i)},

2In most situations that we are interested, we can assume n� r.



10 S. WANG, X. S. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

where sib(j) is the sibling of i in T and ances(i) is the set of ancestors of node i
including i. Similarly, the right visited set associated with i is

Wi = {j | j is a right node and sib(j) ∈ ances(i)}.

Vi and Wi are essentially the stacks before the visit of i in the postordered and
reverse-postordered traversals of T , respectively.

We now describe how the column compression works. We still use the same 8× 8
block matrix example after the row compression for illustration.

4.3.1. Column compression – level 1. After the row compression, the up-
dated off-diagonal blocks F̂j ≡ A|t̂j×(I\tj), j = 1, 2, . . . , 14 are stored in the individual
contexts, at different levels of the HSS tree. For example, F1 is stored in the context
{0}, F3 is stored in the context {0, 1}, and F7 is stored in the context {0, 1; 2, 3}. The
algorithm for the column compression is also in an upward sweeping along T [30]. To
prepare for the compression associated with the leaf nodes, we first need a redistri-
bution phase to transfer the A|t̂j×sib(tj) blocks for nodes j at the higher levels to the
bottom leaf level. This is achieved in logP steps of communication in a top-down
fashion. In each step, we redistribute A|t̂j×sib(tj) in the context of j to the contexts
of the leaf nodes. These j indices of the row blocks that need to be redistributed
downward are precisely those in the visited sets in Definition 4.1. For instance, the
leaf node 2 needs the pieces corresponding to the nodes V2 ∪W2 = {1} ∪ {6, 14}. For
all the leaf nodes, the redistribution procedure achieves the following blocks which
need to be compressed in this stage:

GH
1 =

 A|t̂2×t1
A|t̂6×t1
A|t̂14×t1

 , GH
2 =

 A|t̂1×t2
A|t̂6×t2
A|t̂14×t2

 , GH
4 =

 A|t̂3×t4
A|t̂5×t4
A|t̂14×t4

 , GH
5 =

 A|t̂4×t5
A|t̂3×t5
A|t̂14×t5

 ,

GH
8 =

 A|t̂9×t8
A|t̂13×t8
A|t̂7×t8

 , GH
9 =

 A|t̂8×t9
A|t̂13×t9
A|t̂7×t9

 , GH
11 =

A|t̂12×t11
A|t̂10×t11
A|t̂7×t11

 , GH
12 =

A|t̂11×t12
A|t̂10×t12
A|t̂7×t12

 .

(4.5)

We can use Vi and Wi to simplify the notation. For example, we write

t̄1 = t̂2 ∪ t̂6 ∪ t̂14, G
H
1 = A|t̄1×t1 .

We still use the ScaLAPACK subroutine PxGEMR2D to perform these inter-context
communications. In this redistribution phase, the number of messages sent is logP ,
and the number of words is r n√

P
. Thus the communication cost is [logP, rn√

P
logP ].

After the redistribution, the layout of the off-diagonal blocks is illustrated by
Figure 4.1(c), which initiates the parallel column construction. At the bottom level,
the contexts {0}, {1}, {2}, {3}, {4}, {5}, {6}, and {7} are associated with the leaf
nodes 1, 2, 4, 5, 8, 9, 11, and 12, respectively. GH

i for all leaves i are indicated by the
shaded areas in Figure 4.1(c). We carry out a parallel RRQR factorization on Gi:

Gi ≈ ViG̃i.

This can be denoted as

Gi ≈ A|t̄i×t̃iV
H
i ,
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where t̃i is a subset of ti and we can understand as that G̃i =
(
A|t̄i×t̃i

)H
can be

stored in the space of Gi. (This is solely for notational convenience. See the remark
for (4.2).) We note that this step is done locally within each process. The V generators
are obtained here.

To prepare for the upper level column compression, communications occur pair-
wise: {0} ↔ {1}, {2} ↔ {3}, {4} ↔ {5}, {6} ↔ {7}. The upper level blocks
Gi, i = 3, 6, 10, 13 for compression are formed by ignoring the V basis matrices and
merging parts of A|t̄c1×t̃c1 and A|t̄c2×t̃c2 . That is, we set

Gi =
(
A|t̄i×t̃c1 , A|t̄i×t̃c2

)
, Bc1 = A|t̂c1×t̃c2 , Bc2 = A|t̂c2×t̃c1 . (4.6)

This procedure is illustrated in Figure 4.1(d). Two communication steps are needed.
In the first step Bc1 and Bc2 are generated by exchanging A|t̂c2×t̃c1 and A|t̂c1×t̃c2
pairwise between c1’s and c2’s contexts. We note that some B generators are obtained
here. The second step is to redistribute the newly merged off-diagonal block Gi onto
the process grid associated with the contexts for nodes i = 3, 6, 10, 13.

We note that during the column compression stage, the number of nodes in Vi ∪
Wi needed to form Gi is the same as the number of levels in the HSS tree, which
is log( n

m ) ≈ P . See, e.g., (4.5). Therefore, the row dimension of Gi is bounded
by r log( n

m ), which is much smaller than the column dimension n during the row
compression stage. Similar to the level 1 row compression, during this redistribution

phase, the number of messages is 2 and the number of words exchanged is r2 log P
2 · 2.

The communication cost is then [2, r2 log P
2 · 2].

4.3.2. Column compression – level 2. At level 2, the contexts {0, 1}, {2, 3},
{4, 5}, and {6, 7} are associated with the nodes 3, 6, 10, and 13, respectively. Each
off-diagonal block Gi, i = 3, 6, 10, 13 has already been distributed onto the respective
process context, as illustrated in Figure 4.1(d). Then we perform a parallel RRQR
factorization on each Gi:

Gi =

(
Wc1

Wc2

)
G̃i, G̃i ≡

(
A|t̄i×t̃i

)T
. (4.7)

Some W generators are obtained. Since each Gi is bounded by the size r logP × 2r
and two processes are used for each RRQR factorization, using (4.1), we obtain the
communication cost [log

√
2, 2r+r log P√

2
log
√

2] · r.
To enable the upper level column HSS construction, communication occurs pair-

wise: {0, 1} ↔ {2, 3} and {4, 5} ↔ {6, 7}. The procedure is illustrated by Fig-
ure 4.1(e). Similar to (4.6), two communication steps are needed. During the dis-
tribution phase, the number of messages is 2, and the number of words exchanged is
r2 log P

4 · 2. The communication cost is [2, r2 log P
4 · 2].

4.3.3. Column compression – level 3. At level 3, the two contexts {0, 1; 2, 3}
and {4, 5; 6, 7} are associated with the nodes 7 and 14, respectively. Each off-diagonal
block Fi, i = 7, 14 has already been distributed onto the respective process contexts,
as shown in Figure 4.1(e). Then we perform RRQR factorizations similarly to (4.7).
The communication cost of RRQR is given by [log

√
4, 2r+r log P√

4
log
√

4] · r.
Since the level-4 node is the root node 15 of T , there is no off-diagonal block F15

associated with it. Thus, the entire parallel HSS construction is finalized at this step.
There is only one stage of communications occurring: {0, 1; 2, 3} ↔ {4, 5; 6, 7}, which
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is similar to (4.6) except there is no merging step. Figure 4.1(f) indicates that after
this final communication, all the HSS generators are obtained. The communication

cost is [2, r2 log P
8 · 2].

4.3.4. Summation of communication costs in column compression. We
now sum all the messages and words communicated at all the levels of the tree during
the column compression, and obtain the total communication costs as follows, where
L ≈ logP :

(1) Redistributions:

#messages = logP +

L∑
i=1

2 ≈ 3 logP,

#words =
rn√
P

logP +

L∑
i=1

(
r2 logP

2i
2) = O(rn).

(2) RRQR factorizations:

#messages =

L∑
i=1

log
√

2i · r = r

L∑
i=1

i

2
= O(r log2 P ),

#words =

L∑
i=1

(
2r + r logP√

2i
log
√

2i
)
· r

= r · 2r + r logP

2

L∑
i=1

i

2i/2
= O(r2 log2 P ).

4.4. Total communication cost in parallel HSS construction. After the
two stages of compression, all the HSS generators Di, Ui, Ri, Bi,Wi, Vi are obtained.
The following formulas summarize the total communication costs for the entire parallel
HSS construction, including both the row construction and the column construction:

(1) Redistributions:

#messages = O(logP ), (4.8)

#words = O(rn). (4.9)

(2) RRQR factorizations:

#messages = O(r log2 P ), (4.10)

#words = O(rn logP + r2 log2 P ). (4.11)

Comparing (4.8)–(4.11), we see that RRQR factorizations dominate the commu-
nication costs both in message count and in message volume. This is validated in our
performance tests in Section 7.

Putting this in perspective, we compare the communication complexity to the flop
count. It was shown earlier that the total #flops in this phase is O(rn2) [30]. Then,

given a perfect load balance, the flop count per process is O( rn2

P ). Taking (4.11) to
be the dominant communication part, the flop-to-byte ratio is roughly n

P log P , which
is very small. This indicates that our parallel algorithm is very much communication
bound, and its parallel performance is more sensitive to the network speed than the
CPU speed.
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5. Parallel ULV HSS factorization. After the HSS approximation to A is
constructed, we are ready to factorize it via the generators. Here we adopt the ULV-
type factorization method in [7] and present our parallel strategy in terms of a block
2× 2 HSS form (Figure 5.1(a)):(

Dc1 Uc1Bc1V
H
c2

Uc2Bc2V
H
c1 Dc2

)
, (5.1)

where c1 and c2 are children of a node i and are leaves of the HSS tree T , and the
generators associated with c1 and c2 are distributed on the process grids corresponding
to the contexts of c1 and c2, respectively. The context of i is the union of the contexts
of c1 and c2. We assume that the sizes of Uc1 and Uc2 are m× r.

(a) A block 2× 2 HSS form (b) Introducing zeros into off-diagonal blocks

(c) Introducing zeros into diagonal blocks (d) After partial diagonal elimination

Fig. 5.1. (a). The ULV factorization of a block 2 × 2 HSS form and the illustration of the
inter-context communication to form (5.4).

We start with the QL factorization of Uc1 and Uc2 :

Uc1 = Qc1

(
0

Ũc1

)
, Uc2 = Qc2

(
0

Ũc2

)
, (5.2)

where Ũc1 and Ũc2 are lower triangular matrices of size r × r, respectively. (In fact,
since Uc1 and Uc2 have orthonormal columns in our HSS construction, we can directly

derive orthogonal matrices them so that Ũc1 and Ũc2 become identity matrices.) We
note that there is no inter-context communication at this stage. We multiply QH

c1 and
QH

c2 to the block rows independently within each context and obtain

(
QH

c1 0
0 QH

c2

)(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)
=

 D̂c1

(
0

Ũc1

)
Bc1V

H
c2(

0

Ũc2

)
Bc2V

H
c1 D̂c2

 .
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This is illustrated by Figure 5.1(b).
Next, we partition the diagonal blocks conformably as

D̂c1 = QH
c1Dc1 =

(
D̂c1;1,1 D̂c1;1,2

D̂c1;2,1 D̂c1;2,2

)
, D̂c2 = QH

c2Dc2 =

(
D̂c2;1,1 D̂c2;1,2

D̂c2;2,1 D̂c2;2,2

)
,

where D̂c1;2,2 and D̂c2;2,2 are of size r× r, respectively. Compute an LQ factorization
independently within each context:(

D̂c1;1,1 D̂c1;1,2

)
=
(
D̃c1;1,1 0

)
Pc1 ,(

D̂c2;1,1 D̂c2;1,2

)
=
(
D̃c2;1,1 0

)
Pc2 .

We multiply Pc1 and Pc2 to the block columns independently within each context and
obtain:(

QH
c1 0
0 QH

c2

)(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)(
PH
c1 0
0 PH

c2

)

=


(
D̃c1;1,1 0

D̃c1;2,1 D̃c1;2,2

) (
0

Ũc1Bc1

(
Ṽ H
c2;1 Ṽ H

c2;2

) )(
0

Ũc2Bc2

(
Ṽ H
c1;1 Ṽ H

c1;2

) ) (
D̃c2;1,1 0

D̃c2;2,1 D̃c2;2,2

)
 , (5.3)

where the blocks are partitioned conformably. See Figure 5.1(c). We note that there
is still no inter-context communication up to this stage.

Then we remove c1 and c2 form T , and i becomes a leaf, which we assign new
generators:

Di =

(
D̃c1;2,2 Ũc1Bc1 Ṽ

H
c2;2

Ũc2Bc2 Ṽ
H
c1;2 D̃c2;2,2

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
, Vi =

(
Ṽc1;2Wc1

Ṽc2;2Wc2

)
.

(5.4)
These generators are formed via inter-context communications. See Figure 5.1(d).
(5.4) maintains the form of the recursive definition (2.1) of the HSS generators, except
that the size has been reduced due to the HSS compression introduced in section 4.

Such a step is then repeated recursively. When the root node is reached, an LU
factorization with partial pivoting is performed on Di.

We now examine the communication cost in the HSS factorization. In the first step
corresponding to the leaf level, each process performs local QL and LQ factorizations
with Ui of size bounded by m× r. No communication is involved. In the subsequent
higher levels, the sizes of all the matrices are bounded by 2r× 2r, as in Figure 5.1(d)
and (5.4). The ScaLAPACK QL/LQ factorization and matrix multiplication routines

all have the communication cost [O( 2r
b ), O( (2r)2√

Pi
)] [2], where b is the block size used

in ScaLAPACK, and Pi is the number of processes used for node i of T . Summing over
all the levels, the total cost is bounded by

[O(
r

b
logP ), O(r2 logP )].

Since r � n, this cost is much smaller than that incurred during the HSS compression
phase (See (4.10)–(4.11)).



SCALABLE HIERARCHICALLY SEMISEPARABLE ALGORITHMS 15

6. Parallel HSS solution. We solve the linear system of equations Ax = b
after obtaining an HSS approximation to A in Section 4 and the ULV factorization in
Section 5. We continue the discussion for the block 2× 2 HSS form in section 5, and
the HSS system looks like(

Dc1 Uc1Bc1V
H
c2

Uc2Bc2V
H
c1 Dc2

)(
xc1
xc2

)
=

(
bc1
bc2

)
. (6.1)

With the aid of (5.3), we can rewrite (6.1) into the following form:
(
D̃c1;1,1 0

D̃c1;2,1 D̃c1;2,2

) (
0

Ũc1Bc1

(
Ṽ H
c2;1 Ṽ H

c2;2

))(
0

Ũc2Bc2

(
Ṽ H
c1;1 Ṽ H

c1;2

)) (
D̃c2;1,1 0

D̃c2;2,1 D̃c2;2,2

)


x̃c1;1

x̃c1;2

x̃c2;1

x̃c2;2

 =


b̃c1;1

b̃c1;2

b̃c2;1

b̃c2;2

 ,

(6.2)
where

xc1 = PH
c1 x̃c1 = PH

c1

(
x̃c1;1

x̃c1;2

)
, xc2 = PH

c2 x̃c2 = PH
c2

(
x̃c2;1

x̃c2;2

)
,

bc1 = Qc1 b̃c1 = Qc1

(
b̃c1;1

b̃c1;2

)
, bc2 = Qc2 b̃c2 = Qc2

(
b̃c2;1

b̃c2;2

)
.

(6.2) is illustrated by Figure 6.1. We point out that the solution to (6.1) is converted
into the solution to (6.2). We can easily compute the original solution x once x̃c1 and
x̃c2 are obtained as follows.

Fig. 6.1. The illustration of the linear system of equations (6.2) when i = 3.

First, the following two triangular systems can be efficiently solved locally within
each context:

D̃c1;1,1 x̃c1;1 = b̃c1;1, D̃c2;1,1 x̃c2;1 = b̃c2;1.

Then a local update of the right hand side is conducted:

b̃c1;2 = b̃c1;2 − D̃c1;2,1 x̃c1;1, b̃c2;2 = b̃c2;2 − D̃c2;2,1 x̃c2;1.

Up to this stage, there is no inter-context communication between c1’s and c2’s con-
texts.

Next, we update the right hand side via inter-context communication:

b̃c1;2 = b̃c1;2 − Ũc1

[
Bc1

(
Ṽ H
c2;1 x̃c2;1

)]
,

b̃c2;2 = b̃c2;2 − Ũc2

[
Bc2

(
Ṽ H
c1;1 x̃c1;1

)]
.
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Finally, we solve a system on the i context:(
D̃c1;2,2 Ũc1Bc1 Ṽ

H
c2;2

Ũc2Bc2 Ṽ
H
c1;2 D̃c2;2,2

)(
x̃c1;2

x̃c2;2

)
=

(
b̃c1;2

b̃c2;2

)
.

This can be done by two triangular solutions after the LU factorization of the coeffi-
cient matrix.

For the general case, the above idea is applied recursively.

7. Performance tests and numerical results. In this section, we present the
parallel performance results of our HSS solver when applied to some dense matrices
arising from practical applications. We carry out the experiments on the cluster Cray
XE6 (hopper.nersc.gov) at the National Energy Research Scientific Computing Cen-
ter (NERSC). Each node has two 12-core AMD MagnyCours 2.1GHz processors, with
32GB memory. There are 24 cores per node. The timing and storage are reported by
IPM (Integrated Performance Monitoring) [19].

Example 7.1. Consider the solution of a Helmholtz equation of the form:(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω), (7.1)

where ∆ the Laplacian, ω the angular frequency, v(x) the seismic velocity field, and
u(x, ω) is called the time-harmonic wavefield solution to the forcing term s(x, ω).

Helmholtz equations arise frequently in practical applications such as seismic
imaging, where the simplest case of the acoustic wave equation is of the form (7.1).
The discretization of the Helmholtz operator often leads to very large sparse matrices
A which are highly indefinite and ill-conditioned. It has been observed that, in the
direct factorization of A the dense intermediate matrix may be compressible [11, 25].

We implemented a parallel multifrontal factorization method for such a matrix
A based on the multifrontal method [9] with the nested dissection reordering [12]. In
nested dissection, an n × n mesh is recursively partitioned into submeshes by sepa-
rators. The dense matrix A we consider is the last Schur complement corresponding
to the final step separator in nested dissection, and also has size n× n. A structured
parallel multifrontal method can be further obtained with the intermediate dense
matrices (called frontal matrices) approximated by HSS matrices as in [25]. The par-
allel HSS methods developed in this work can be used to yield a structured parallel
multifrontal method.

First, we present the performance of the HSS algorithms applied to the dense
matrix A. (The frequency ω = 5Hz is used to get A and then A.) For the weak scaling
test, we increase the number of cores by a factor of four upon doubling the mesh size
n. Table 7.1 shows the runtime of the parallel HSS methods for n ranging from 5, 000
to 80, 000. We split the total HSS compression time into an RRQR factorization part
and a data redistribution part. As predicted, the HSS factorization and solution are
faster than the HSS compression. Inside the compression phase, the redistribution
part takes less time than the RRQR factorization part. The weak scaling is depicted
in Figure 7.1(a). We observe that the algorithms scale about the same. The weak
scaling factor is about 2.0.

Secondly, we study the performance gain of the structured parallel multifrontal
solver for the sparse discretized matrix A (with parallel HSS operations for the inter-
mediate dense matrices). We consider mesh sizes in 2D ranging from 5, 000×5, 000 to
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n 5, 000 10, 000 20, 000 40, 000 80, 000
P 16 64 256 1, 024 4, 096

Exact LU factorization (s) 2.24 4.75 10.09 23.18 53.65
Total (s) 1.32 2.65 5.03 14.03 37.52

Construction RRQR (s) 1.14 1.62 2.97 8.28 22.14
HSS Redistribution (s) 0.18 1.03 2.06 5.75 15.38

Factorization (s) 0.11 0.14 0.19 0.24 0.29
Solution (s) 0.07 0.10 0.14 0.20 0.23

Table 7.1
Computational time and weak scaling of the parallel HSS algorithms applied to the largest dense

frontal matrices A from the exact multifrontal factorization of 2D discretized Helmholtz operators
in (7.1), where n is the size of A, P is the number of processes, and the relative tolerance in HSS
methods is τ = 10−4.
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(a) HSS results for A as in Tables 7.1 (b) MF+HSS results for A as in Table 7.2

Fig. 7.1. Weak scaling curves for the runtime data in Tables 7.1 and 7.2.

80, 000 × 80, 000. (The largest matrix A has dimension 6.4 billion.) Table 7.2 shows
both the runtime and the memory usage for the solver, as compared with the exact
multifrontal solver. It is observed that the structured solver is about 2 to 3 times
faster than the exact multifrontal solver, and requires less storage.

N (mesh: n× n) 5, 000 10, 000 20, 000 40, 000 80, 000
P 16 64 256 1, 024 4, 096

MF
Time (s) 1.40e2 2.95e2 6.12e2 1.39e3 3.20e3
Memory (GB) 4.20e1 1.87e2 8.06e2 3.43e3 1.42e4

MF+HSS
Time (s) 5.80e1 1.33e2 2.72e2 5.91e2 1.38e3
Memory (GB) 3.20e1 1.40e2 5.95e2 2.46e3 9.89e3

Table 7.2
Parallel computational time and storage of the structured multifrontal method (MF+HSS) for

the 2D discretized Helmholtz matrix A as compared with the exact multifrontal method ( MF), where
A has size n2 and P is the number of processes.

Thirdly, we also solve the Helmholtz equation discretized on a 3D n×n×n mesh,
for n ranging from 100 to 500. The result is reported in Table 7.3.

Example 7.2. We show the accuracy of the structured parallel multifrontal solver
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n (mesh: n× n× n) 100 200 300 400 500
P 64 256 1, 024 4, 096 8, 192

MF
Time (s) 1.02e2 1.71e3 5.11e3 Out of
Memory (GB) 4.00e1 5.64e2 2.83e3 memory

MF+HSS
Time (s) 1.00e1 1.06e3 3.22e3 6.41e3 9.83e3
Memory (GB) 3.70e1 5.10e2 2.40e3 6.17e3 1.61e4

Table 7.3
Parallel computational time and storage of the structured multifrontal factorization (MF+HSS)

for the 3D discretized Helmholtz matrix A as compared with the exact multifrontal method (MF),
where A has size n3, P is the number of processes, and MF runs out of memory for n ≥ 400 with
the given number of processes.

(with HSS methods) for the time-harmonic waves in 2D in the previous example. The
mesh size is 5, 000× 3, 000.

Figure 7.2(a) displays a 5Hz time-harmonic wavefield solution to the 2D Helmholtz
equations using the structured multifrontal solver, with the relative tolerance τ =
10−2. The amplitude difference between the solution in Figure 7.2(a) and the true
solution is displayed in Figure 7.2(b). We note that 2 digits of accuracy is insufficient
to produce an acceptable wavefield solution. In Figure 7.2(c), we display the solution
with τ = 10−4. The amplitude difference is shown in Figure 7.2(d) and is a satisfactory
result that is generally sufficient for seismic applications.

Example 7.3. We present the strong scaling result of the parallel HSS construc-
tion for a fixed dense Toeplitz matrix

A = (ai−j)n×n .

Studies of the low-rank property related to Toeplitz matrices can be found in
[21, 8, etc.]. We test the HSS construction only. For n = 100, 000, the computation
time is given in Table 7.4, and the strong scaling curve is plotted in Figure 7.3. We
note that the data redistribution part is more efficient than the RRQR factorization
part in the HSS construction.

P 64 128 256 512 1024

HSS construction (s) 90 51 32 25 28
RRQR factorization (s) 62 35 22 18 15
Redistribution (s) 28 16 10 7 13

Table 7.4
Parallel HSS construction time and strong scaling for a 100, 000× 100, 000 Toeplitz matrix.

8. Conclusions. We have designed and implemented novel parallel algorithms
for the HSS structured matrix algorithms in parallel computation. We are able to
conduct classical structured compression, factorizations, and solutions in parallel. We
performed detailed analysis of the communication costs of the parallel algorithms, and
found that the algorithms are more communication bound than the other algorithms
without using the rank structures. This is mainly because the amount of floating-point
operation is drastically reduced by exploiting the low rankness, but the reduction in
communication is moderate. The future challenge is to design novel communication-
avoiding algorithms for this class of rank structured methods.
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(a) Numerical solution with τ = 10−2 (b) Amplitude difference between the solution

in (a) and the true solution

(c) Numerical solution with τ = 10−4 (d) Amplitude difference between the solution

in (c) and the true solution

Fig. 7.2. 5Hz time-harmonic wavefield solutions and the corresponding errors for the 2D
Helmholtz equation using the structured parallel multifrontal solver with different tolerances τ , where
the results are displayed as images with the Matlab function imagesc.

Our implementations are portable by using the two well established libraries,
BLACS and ScaLAPACK. The computational results for weak scaling, strong scal-
ing, and accuracy demonstrate the high efficiency and scalability of our algorithms.
The algorithms are very useful in solving large dense and sparse linear systems that
arise in real-world applications. For example, we have appplied our new parallel
HSS-embedded multifrontal solver to the anisotropic Helmholtz equations for seismic
imaging, and were able to solve a linear system with 6.4 billion unknowns using 4096
processors, in about 20 minutes. The classical multifrontal solver simply failed due
to high demand of memory. Our techniques can also benefit the development of fast
parallel methods using the other rank structures.
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Fig. 7.3. Strong scaling curve for the HSS construction for a dense 100, 000× 100, 000 Toeplitz
matrix. The data is from table 7.4.
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