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Abstract—This paper presents the first sparse direct solver for
distributed memory systems comprising hybrid multicore CPU
and Intel Xeon Phi co-processors. It builds on the algorithmic ap-
proach of SUPERLU_DIST, which is right-looking and statically
pivoted. Our contribution is a novel algorithm, called the HALO.
The name is shorthand for highly asynchronous lazy offload; it
refers to the way the algorithm combines highly aggressive use
of asynchrony with accelerated offload, lazy updates, and data
shadowing (a la halo or ghost zones), all of which serve to hide
and reduce communication, whether to local memory, across the
network, or over PCIe. We further augment HALO with a model-
driven autotuning heuristic that chooses the intra-node division
of labor among CPU and Xeon Phi co-processor components.

When integrated into SUPERLU_DIST and evaluated on
a variety of realistic test problems in both single-node and
multi-node configurations, the resulting implementation achieves
speedups of up to 2.5× over an already efficient multicore CPU
implementation, and achieves up to 83% of a machine-specific
upper-bound that we have estimated. Our analysis quantifies how
well our implementation performs and allows us to speculate on
the potential speedups that might come from a variety of future
improvements to the algorithm and system.

Index Terms—Sparse Direct Solver; Xeon-Phi acceleration;
GPU; MPI; OpenMP; Communication-avoiding algorithm; Het-
erogeneous computing;

I. INTRODUCTION

The goal of this study is to significantly improve the state-
of-the-art in sparse direct solvers for distributed memory ma-
chines, focusing on how to best exploit on-node accelerators.
Sparse direct solvers compute the solution x of a linear system,
Ax = b, where A is a sparse matrix, by Gaussian elimination,
also known as sparse LU factorization. In a preliminary study,
we enhanced SUPERLU_DIST—an existing state-of-the-art
solver for multicore CPU-based clusters [1]—to use NVIDIA
graphics accerlators [2]; however, our approach was limited in
scope, concentrating primarily on how to effectively offload
certain dense Basic Linear Algebra Subprograms (BLAS)
subproblems, such as dense matrix-matrix multiply (GEMM).
Such an approach is a natural first step. Indeed, it mirrors much

During period of this research, Xing Liu was affiliated with Georgia Institute
of Technology.

of the existing work, which—until our GPU cluster work—
considered only the single-node case [3]–[7]. However, it also
falls short of what is ultimately possible. The present study
overcomes this shortcoming.

For instance, we estimated the best-case speedup of our
prior approach on one of the test problems and platforms
considered in this study. If GEMM cost zero time units, that
speedup would be at most 1.4×. This fares poorly against
the method we propose herein, which by contrast achieves a
speedup of 1.7× on the same test problem.

By the way of explanation, the idea of offloading BLAS calls
is not unreasonable. The most computationally expensive step
in sparse LU factorization is the so-called “Schur-complement
update” computation, which consists of two steps: multiplying
two dense matrices (the GEMM step) and scattering the output
of GEMM back into sparse format (the SCATTER step). Even
if one only offloads large GEMMs, as we did previously so
that Peripheral Component Interface Express (PCIe) transfer
costs would not dominate, a non-offloaded SCATTER either
becomes a bottleneck or—as multicore CPU memory band-
width improves—becomes fast enough that overlapping with
PCIe transfer for GEMM is no longer effective.

What we propose instead is a new approach, based on the
high-level idea of using asynchronous execution as aggres-
sively as possible. Our proposed algorithm shares structural
similarities with communication optimal 2.5D LU factor-
ization, which uses redundancy across processes to reduce
communication across the network [8]. More specifically, we
use redundancy between the CPU and the co-processor to
reduce PCIe communication. However, translating the same
high-level idea to sparse LU factorization is much harder,
due to the irregular parallelism, irregular dependencies, and
irregular data structures. To do this, we need to break some
of the usual algorithmic abstraction boundaries, fusing distinct
steps, such as GEMM and SCATTER, and using asynchrony to
do so across iterations. In addition, we combine asynchrony
with accelerated offload, lazy updates, and data shadowing
(a la halo or ghost zones). This combination hides and
reduces communication, whether to local memory, across the



network, or over PCIe. We refer to this combined technique
as the HALO algorithm, where the term HALO evokes highly
asynchronous lazy offload.

We further enhance the basic HALO framework in two ways,
to make it more effective in practice. First, we develop an
empirical model-driven autotuning scheme to load balance
within the node. This balancing occurs among both CPU
cores and co-processor accelerators. The scheme overcomes
limitations of both static load balancing, which can fail to
accommodate the intrinsic dynamic and irregular nature of
a sparse direct solver; and dynamic load balancing, which
may incur high latency overheads due to PCIe. Secondly,
we address the memory requirement problem of sparse direct
solvers, by implementing a scheme that graceful degrades
when offloading to an accelerator whose memory is much
smaller than the host’s memory. This is done by a heuristic
that exploits the structure of a sparse direct solver’s elimination
tree. These enhancements to HALO make it practical.

Although HALO specifically concerns intra-node perfor-
mance, it is easy to add our single-node implementation
into a distributed memory code—namely, SUPERLU_DIST—
and thereby accelerate the distributed case. The asynchronous
nature of our approach naturally accommodates overlapping
network communication with various on-node tasks. Addition-
ally, although our experimental platform uses Intel Manycore
Xeon Phi (MIC) co-processors, the technique is generic and
could in principle apply to GPU-based platforms. Our hybrid
MIC-accelerated SUPERLU_DIST achieves speedups of up
to 2.5× on practical problems of interest (§ VI), relative to
a highly scalable hybrid MPI+OpenMP baseline. To better
understand performance, we analyze our code’s performance
issues and quantify the potential improvements. Together with
our scaling experiments, this analysis helps us estimate the
potential for future improvements in hardware, software, and
runtime systems. Such findings may be of interest beyond the
specific case of a sparse direct solver.

II. OVERVIEW OF SUPERLU_DIST

Solving a system of linear equations in SUPERLU_DIST
involves three major steps: preprocessing of the input matrix,
sparse LU factorization, and triangular solve. This paper
focuses on the sparse LU factorization step, which can account
for 75–99% of the total solve time. For brevity, we only sketch
the sparse LU factorization step; the interested reader may find
details about SUPERLU_DIST elsewhere [1].

SUPERLU_DIST performs a sparse LU factorization using
the so-called supernodal approach. A supernode is a set of
strongly connected vertices in the graph representation of the
sparse matrix. During pre-processing step, SUPERLU_DIST
extracts the supernodal structure from the input matrix, al-
lowing it to store the sparse matrix as a collection of dense
sub-matrices. This dense sub-matrix representation becomes
the basis for exploiting fast level-3 BLAS operations, such as
GEMM. However, unlike the case of factoring purely dense
matrices, these dense subproblems have widely varying sizes.
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Figure 1: Data distribution in SUPERLU_DIST [1]: a sparse matrix
distributed is among 6 MPI processes arranged in a 2 × 3 grid.
Regions colored in blue denote the non-zero entries of the matrix.
For k=2, A(k:ns, k) and A(k, k+1:ns) (orange background) form
the k-th panel matrices, which after the k-th panel-factorization are
overwritten by L(k) and U(k) panels, respectively. We also show
the k-th Schur-Complement matrix A(k+1:ns, k+1:ns) (yellow
background).

Algorithm 1 SUPERLU_DIST Sparse LU Factorization
1: Input: Distributed sparse matrix A; ns: number of supernodes;
pid : my process rank; Pr(k): k-th process row; Pc(k): k-th
process column.

2: On each MPI process pid do in parallel:
3: for k = 1, 2, 3 . . . ns do
4: Synchronize all processes

Panel Factorization
5: if pid owns A(k, k) then
6: Factor A(k, k) and send L(k, k) to Pr(k) who need it
7: Send U(k, k) to Pc(k)
8: if pid ∈ Pc(k) then
9: Wait for U(k, k)

10: Factor the block column L(k)
11: Send L(k) blocks to needed processes in Pr(:)
12: else
13: Receive L(k) blocks if needed
14: if pid ∈ Pr(k) then
15: Wait for L(k, k)
16: Compute the block row U(k)
17: Send U(k) blocks to required processes in Pc(:)
18: else
19: Receive U(k) blocks if required

Schur-complement update
20: if L(:, k) and U(k, :) are locally non-empty then
21: for j = k+1, k+2, k+3 . . . ns do
22: for i = k+1, k+2, k+3 . . . ns do
23: if pid ∈ Pr(i) ∩ Pc(j) then
24: A(i, j)← A(i, j)− L(i, k)U(k, j)

SUPERLU_DIST uses the Message Passing Interface (MPI)
to express its distributed memory parallelism. The MPI pro-
cesses are logically arranged in a two-dimensional (2D) pro-
cess grid. On this 2D process grid, SUPERLU_DIST dis-
tributes the input matrix A in a block cyclic fashion. For
example, fig. 1 shows sparse matrix distributed among 6 MPI
processes arranged in a 2× 3 grid.



SUPERLU_DIST’s numerical factorization algorithm ap-
pears in alg. 1. The outer loop iterates over all the supernodes
and factors them in sequence. Each iteration consists of two
phases known as the panel-factorization phase and the Schur-
complement update phase.

In the k-th iteration’s panel-factorization phase, the al-
gorithm factors the k-th panel matrices, A(k : ns, k) and
A(k, k+1 : ns), producing the factored panels L(k) and U(k).
Additionally, the MPI process, pid, that owns the A(k, k)
block factors it as A(k, k) = L(k, k)U(k, k). It then sends
U(k, k) to the processes in the same process column group,
denoted Pc(k), to which pid belongs. Similarly, it sends the
block L(k, k) to its process row group, Pr(k). Each column
process p ∈ Pc(k) will, if it owns a non-empty block A(i, k),
calculates the local L factor1 as L(i, k)← U(k, k)−1A(i, k),
and then sends L(i, k) to its own process row. Similarly,
each row process p ∈ Pr(k) calculates a local U factor as
U(k, j)← A(k, j)L(k, k)−1 for each non-zero block A(k, j)
that it owns, and then sends this block to its process column.

Once a process receives all its L(i, k) and U(k, j) blocks,
it starts the Schur-complement update step. In this step, each
process updates all the blocks A(i, j) it owns, which form
parts of the Schur-complement matrix, A(k+1:ns, k+1:ns).
More specifically, the update is

A(i, j)← A(i, j)− L(i, k)U(k, j).

The sparsity patterns in L(i, k) and U(k, j) blocks may
differ from the sparsity pattern in A(i, j). Therefore, SU-
PERLU_DIST first calculates the product,

V ← −L(i, k)U(k, j),

by calling a presumably highly-optimized implementation of
GEMM. Then, it maps elements of V to elements of A(i, j)
and then updates the mapped elements. We call this update
SCATTER and denote it using the binary operator, ⊕, so that

A(i, j)← A(i, j)⊕ V.

Since SCATTER involves indirect addressing, it can be expen-
sive. The GEMM and SCATTER kernels together constitute the
Schur-complement update. This is typically the most expensive
sub-step of the sparse LU factorization phase.

III. THE DESIGN SPACE OF MIC-BASED SUPERLU_DIST

In contrast to a GPU, which today may only used as a
co-processor for offloading, MIC has two possible execution
modes. The first is similar to GPU offloading, and so is
referred to as offload mode. For SUPERLU_DIST, one could
offload compute intensive steps like GEMM to MIC. The
second option is to use the MIC as an independent multicore
node, launching multiple MPI processes onto MIC to run
SUPERLU_DIST; this mode is called native mode.

In SUPERLU_DIST, where many calculations are sequential
or lack enough parallelism, native mode is not likely to

1. . . overwriting A with the L and U factors

perform well. A single MIC core is slower than a typical high-
end CPU core, as it executes in-order, at a lower operating
frequency, and with a higher cache miss penalty. On the other
hand, if we spawn heterogeneous MPI processes on both the
CPUs and the MICs, load balancing among the CPUs and the
MICs becomes difficult. Moreover, the MIC has a relatively
low memory capacity, which limits the use of the MIC in
native mode to matrices of relatively small sizes (table III),
compared to what is possible on the CPU-based host. Thus,
our approach focuses on using offload mode.

So what should be offloaded? Recall that there are two main
phases, the panel-factorization and the Schur-complement up-
date. Panel-factorization typically has insufficient parallelism
for the MIC, and for a small number of MPI processes, it
is also not usually the performance bottleneck. At relatively
larger numbers of MPI processes, MPI communication costs
dominate panel-factorization, which MIC acceleration cannot
improve. Therefore, we do not consider this phase for offload.

By contrast, the Schur-complement update phase has a large
number of independent GEMM and SCATTER calls that can
account for more than 70-80% of the factorization time. Thus,
this phase is a good offload candidate.

Our prior approach offloaded the Schur-complement up-
date’s GEMM calls to the GPU [2]. In each iteration, it
offloaded a large GEMM call that multiplies L and U panel
matrices, as V mt×nt = −Lmt×ktUkt×nt , where typically
mt, nt � kt. Doing so required first sending the L and the U
panel matrices to the GPU, then calling CUBLAS to compute
GEMM, and then sending the product matrix V back to the
CPU via PCIe. The SCATTER of V would occur on the CPU.
To hide the data transfer costs, our prior approach pipelined
the transfer of V and execution of the SCATTER.

This approach has two critical limitations. First, the
bandwidth-bound SCATTER calls, since they remain on the
CPU, cannot benefit from high GPU memory bandwidth. In
the best test case of this paper, leaving SCATTER unaccelerated
on a 20-core Intel Ivybridge system yields a maximum possible
speedup of 1.4×, even if we assume the GEMM cost to be zero.
Secondly, modern CPU bandwidth is significantly higher than
the PCIe bandwidth. Therefore, efficiently pipelining PCIe
transfer and SCATTER of V is not possible, since the SCATTER
time is dwarfed by PCIe transfer time. Thus, our proposed
algorithm will try to extend this prior approach by also finding
a way to effectively offload SCATTER calls to MIC.

IV. THE HIGHLY ASYNCHRONOUS LAZY OFFLOAD
ALGORITHM

To understand our new HALO algorithm, it helps to start
with a natural and simpler method. For additional simplicity,
first consider the single node case, which we will subsequently
extend for the distributed memory case.

A primitive offload algorithm: Recall the k-th iteration
of alg. 1. It factors the k-th panel matrices, A(k:ns, k)
and A(k, k+1:ns), during the panel-factorization phase,
producing the factored panels, L(k) and U(k). In the



Algorithm 2 SUPERLU_DIST with MIC-offloading
1: Initialize Aφ ← 0
2: for k = 1, 2, 3 . . . ns do

Panel Factorization
same as alg. 1
...
Fetch and Assemble matrix on the CPU

3: (†) the MIC sends Aφ(k+1:ns, k+1) and Aφ(k+1, k+1:ns)
blocks to the CPU
Hybrid Schur-complement Update

4: if L(k) and U(k) are locally non-empty then
5: find nφ such that k<nφ ≤ ns
6: (‡) send L(k) and U(k, nφ : ns) to the MIC

Schur Complement Update on the CPU
7: for j = k+1, k+2, k+3 . . . nφ − 1 do
8: for i = k+1, k+2, k+3 . . . ns do
9: if pid ∈ Pr(i) ∩ Pc(j) then

10: A(i, j)← A(i, j)− L(i, k)U(k, j)
Schur-complement Update on the MIC Asynchronously

11: Wait for (‡) to finish
12: for j = nφ, nφ + 1, nφ + 2 . . . ns do
13: for i = k+2, k+3, k+4 . . . ns do
14: if pid ∈ Pr(i) ∩ Pc(j) then
15: Aφ(i, j)← Aφ(i, j)− L(i, k)U(k, j)

Reduce the MIC updates with the CPU
16: the CPU waits for (†) to finish
17: A(k+1:ns, k+1)← A(k+1:ns, k+1)+Aφ(k+1:ns, k+1)
18: A(k+1, k+2:ns)← A(k+1, k+2:ns)+Aφ(k+1, k+2:ns)

Schur-complement update phase, it updates the k-th Schur-
complement A(k+1:ns, k+1:ns) by,

A(k+1:ns, k+1:ns)← A(k+1:ns, k+1:ns)−L(k)U(k).

Here is a primitive algorithm to offload the Schur-
complement update phase to the MIC. This algorithm keeps
a copy of the matrix A on the MIC. In the k-th iteration, it
transfers the k-th panel matrices from the MIC to the CPU.
Using the k-th panels, it calculates the factored panels L(k)
and U(k) on the CPU. It then sends the L(k) and U(k)
panels to the MIC and updates the k-th Schur-complement
on the MIC. Thus, in each iteration this algorithm transfers
a pair of panel matrices in each direction; these matrices are
considerably smaller than the k-th Schur-complement. Conse-
quently, the PCIe communication volume in each iteration can
be relatively small. However, many iterations will not have
enough parallelism to utilize the MIC well; therefore, those
iterations may be significantly slower on the MIC than on the
CPU. To avoid such slowdown, we instead consider selectively
offloading the Schur-complement update to the MIC.

The HALO algorithm: The HALO algorithm enables
selective offloading of the Schur-complement update to the
MIC by extending the primitive algorithm as shown in alg. 2,
summarized as follows.

HALO keeps the matrix A on the CPU and keeps a structural
copy of the matrix A on the MIC, which it initializes with
zeros. In other words, the matrix on the MIC has the same
sparse data structure as the matrix A, but all the stored non-
zero entries are initialized to zero. We denote the matrix on
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Figure 2: HALO: Schur-complement update in the k-th iteration.
The L(k) and U(k) panels—calculated in k-th panel-factorization
on the CPU—are sent to the MIC. The MIC sends (k + 1)st A-
panels to the CPU. The CPU and MIC update parts of the k-th Schur-
complement, shown in orange for the CPU and in green for MIC.
The CPU merges the received MIC’s (k + 1)st A-panels with its
own (k + 1)st A-panels, before (k + 1)st iteration starts.

the MIC as Aφ to distinguish it from the matrix A on the CPU.
In the k-th iteration, HALO transfers the k-th panel matrices
from the MIC to the CPU. And, on the CPU, it reduces the
k-th panels from the CPU and the MIC, via

A(k:ns, k) ← A(k:ns, k)+Aφ(k:ns, k); (1)
A(k, k+1:ns) ← A(k, k+1:ns)+Aφ(k, k+1:ns). (2)

HALO then factors the reduced k-th panel matrices, yield-
ing L(k) and U(k) on the CPU. If it offloads the Schur-
complement update to the MIC, then it also sends the L(k)
and U(k) panels to the MIC and updates the k-th Schur-
complement there; otherwise it does the update on the CPU.

In general, HALO divides the k-th iteration’s Schur-
complement update between the CPU and the MIC. For some
value nφ, it updates the submatrix A(k+1:ns, k+1:nφ) on the
CPU and A(k+1:ns, nφ+1:ns) on the MIC. We discuss how
to choose nφ in § V-B.

Figure 2 illustrates the regions of the matrix updated on and
transferred from both the CPU and the MIC.

Note that in the k-th iteration, HALO does not update the
k+1-th panels on the MIC. This way the MIC can start the
transfer of the k+1-th panel before it executes the k-th Schur-
complement update. Thus, HALO transfers the k+1-th panels
and updates the k-th Schur-complement on the MIC in parallel.
Figure 3 shows a sample execution timeline.

To see how this method works, consider any block A(i, j)
and its corresponding Aφ(i, j) on the MIC. Let A0(i, j) denote
the initial value of A(i, j) and recall that Aφ(i, j) is initially
zero. In some iteration k < min(i, j), HALO either updates
Aφ(i, j)← Aφ(i, j)−L(i, k)U(k, j) on the MIC or it updates
A(i, j)← A(i, j)−L(i, k)U(k, j) on the CPU. Let K1 denote
the set of iterations in which Aφ(i, j) is updated on the MIC,
and let K2 denote those iterations in which A(i, j) is updated
on the CPU. Then, the snapshots of A(i, j) and Aφ(i, j) are
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Figure 3: Concurrent execution of the Schur-complement update
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given by:

Aφ(i, j) ← −
∑
k∈K1

L(i, k)U(k, j); (3)

A(i, j) ← A0(i, j)−
∑
k∈K2

L(i, k)U(k, j). (4)

Were we to add Aφ(i, j) to A(i, j), that would be the same
as updating A(i, j) on K1 iterations, i.e.,

A(i, j) ← A(i, j) +Aφ(i, j)

= A0(i, j)−
∑

k∈K1∪K2

L(i, k)U(k, j).

Thus, before the k = min(i, j)-th iteration begins, we can
fetch the block Aφ(i, j) and add it to A(i, j). This reduced
A(i, j) block contains updates from all of the K1 ∪ K2

iterations. Hence, when participating in the k = min(i, j)-th
panel-factorization, the A(i, j) block in the MIC offload case
is the same as in non-offloaded case. This argument holds
for all the blocks participating in the k-th panel-factorization.
Consequently, the factored panels L(k) and U(k) are the same
in the case of MIC offload as they would have been otherwise.

Distributed HALO: In SUPERLU_DIST, each process
owns a subset of the blocks of A following a 2D-cyclic data
distribution. In the distributed HALO, we assign one MIC to
each MPI process. Thus, we can conveniently assume that the
shadow matrix, Aφ, has the same distribution the MICs as A.

Like the single node case, in each iteration’s distributed
panel-factorization, each process calculates or receives from
other processes L(k) and U(k) blocks. It then transfers the
L(k) and U(k) blocks to the MIC, and the CPU and the MIC
can now update respective Schur-complement in parallel.

In contrast to single node case, for a given k only a subset
of processes will own the blocks of k+1-th panels, following
from the 2D cyclic distribution of the matrix. Therefore, in the
k-th iteration, a process only needs to fetch the k+1-th panels
from the MIC if it owns the k + 1-th panel blocks, thereby
further reducing the overall PCIe transfer volume.

V. ALGORITHMIC OPTIMIZATIONS FOR HALO

To make HALO practical for wide range of matrices, we
augment HALO with several more performance optimizations.
These optimizations expose parallelism at all levels of SIMD,
multithreading, accelerator, and MPI, and reduces PCIe trans-
fer volume and intra-node synchronizations. Due to a lack of
space, here we describe the two key algorithmic enhancements
for HALO.

A. Limited device memory considerations

Storing large matrices may require larger than the MIC’s
8 GiB of memory. Using multiple MICs is not always possible
or economical. Therefore, we augment the HALO algorithm
with a kind of “out-of-core” strategy that keeps a submatrix
on the MIC and offloads updates of this submatrix.
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Figure 4: (a) The non-zero structure of some sparse matrix; (b) the
elimination tree of the sparse matrix [9]. If only 4 panels fit on the
MIC, then our heuristic keeps the panels corresponding to nodes with
largest number of descendants—here, 5, 8, 9 and 12—on the MIC.

Why might such an approach work in practice? In a sparse
LU factorization, a small number of blocks are updated
in many more iterations than other blocks. Therefore, the
Schur-complement update of a small number of blocks can
account for a large fraction of all Schur-complement update
computations. For example, consider the 12×12 sparse matrix
in fig. 4a. The (12, 12) block is updated during the Schur-
complement updates of iterations 1 through 11. On the other
hand, the blocks in the 1,2,4,6,7,10, and 11-th panels are not
updated in any iteration’s Schur-complement update. There-
fore, it should be possible to offload a large fraction of the
Schur-complement update operations keeping only a small
fraction of matrix blocks on the MIC.



To choose these blocks, we use a heuristic based on the
elimination tree of the sparse matrix [9]. The elimination tree,
computed in any sparse LU factorization, shows which blocks
will be updated in the k-th iteration’s Schur-complement
update. More specifically, we need only update the panels
corresponding to the ancestors of the k-th node on elimination
tree. For example, fig. 4b shows the elimination tree for the
matrix of fig. 4a. In first iteration’s Schur-complement update,
only panels 3, 5, 9, and 12 need to be updated.

Conversely, the k-th panels are updated in all the iterations
corresponding to descendants of k-th node in the elimina-
tion tree. Therefore, panels having the largest number of
descendants are updated in largest number of iterations. Thus,
our heuristic is to choose such panels. For example, in the
elimination tree of fig. 4b, the nodes with the largest number
of descendants are 5, 8, 9 and 12. Therefore, we would keep
the 5, 8, 9 and 12-th panel matrices, shown in red in fig. 4a,
on the MIC.

The best-case scenario for the above scheme is if the MIC
has infinite memory, so that we would not need to consider by
how much to restrict offload. Relative to this ideal scenario,
§ VI shows the above scheme can obtain speedups very close
to the infinite-memory ideal.

B. Model-driven autotuning of intra-node load balance

Intra-node load balance i.e. choosing the optimal value of
nφ in fig. 2 is vital to achieving good load balance. However,
the relative performance of the GEMM and the SCATTER
kernel depends strongly on their input operand sizes. This
motivates a model-driven scheme for choosing nφ.

By way of motivation, consider fig. 5. It shows, for GEMM
operations at various problem sizes, the speedup of MIC
relative to a dual-socket 10-core Ivy Bridge system. While
the theoretical peak performance of MIC is twice that of the
aggregate peak of the Ivybridge system, fig. 5 clarifies that for
a wide range of input sizes, the CPU can be much faster than
MIC. As a function of problem size, the relative performance
varies widely and nonlinearly.
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Figure 5: The speedup of MIC over a 20-core Ivy Bridge EP server
varies widely and nonlinearly, for a GEMM that multiplies a mt×kt
by a kt × nt matrix. (Speedups are shown as contour lines.)

Similarly, the performance of SCATTER on MIC also de-
pends on the input block size, as fig. 6 shows. Due to MIC’s
in-order execution, it is crucial to use SIMD and software

prefetching; however, for small blocks, it is hard to use SIMD
and prefetching effectively. From one iteration to another, the
distribution of block sizes in the Schur-complement update
varies a lot, and small blocks are common.
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Figure 6: When scattering small blocks (bx×by), performance
suffers due to poor SIMD and prefetch efficiency.

MDWIN: Among conventional generic approaches to load
balancing, static load balancing is hard to do well under
such workload variability, and dynamic load balancing over
PCIe may incur high latency overheads. Instead, we propose
a model-driven autotuning scheme, which we call MDWIN.

MDWIN is a static approach driven by an empirical perfor-
mance model. At a high level, it tries to predict the execution
time of the Schur-complement update using a simple analytical
model, whose parameters derive from offline benchmarks. The
model is calibrated on both the CPU and MIC, and is used
to predict the value of nφ at which the CPU and MIC are
approximately balanced in time.

Let tGEMM, tSCATTER, t
(φ)
GEMM, t(φ)SCATTER be the GEMM and SCATTER

times on the CPU and MIC, respectively. In each iteration k,
these are functions of nφ. MDWIN seeks nφ such that

tGEMM + tSCATTER ≈ t(φ)GEMM + t
(φ)
SCATTER. (5)

The component times of this model are determined as follows.
Modeling GEMM costs: To determine tGEMM and t(φ)GEMM, MD-

WIN maintains a lookup table of flop rates for V ← L · U ,
where V is mt × nt, L is mt × kt, and U is kt × nt. The
sizes may be taken at a sample of points, the number of which
may be used to tradeoff the table size and construction time.
Let F (mt, nt, kt) denote this table of flop rates for the CPU.
We simply estimate tGEMM = 2mtntkt/F (mt, nt, kt). A similar
table and formula for t(φ)GEMM may be constructed on MIC.

Modeling SCATTER costs: SCATTER is a memory
bandwidth-bound kernel. Scattering a block of size bx×by re-
quires 3bx×by memory operations.2 On the CPU, we observed
that in most cases, only a few threads were sufficient to achieve

2For scatter operation A(i, j)← A(i, j)− V (i, j), we assume two reads
and one write for each element



Matrix n
nnz(A)

n
Fill-in ratio # Flops in

factorization

atmosmodd 1,270,432 6.93 244.00 1.12E+13
audikw_1 943,695 82.28 35.01 1.13E+13
dielFilterV3real 1,102,824 80.97 14.57 1.94E+12
Ga19As19H42 133,123 66.74 180.20 1.59E+13
Geo_1438 1,437,960 41.89 85.71 3.28E+13
H2O 67,024 33.07 210.98 2.28E+12
nd24k 72,000 398.82 23.08 3.98E+12
nlpkkt80 1,062,400 26.53 141.63 3.03E+13
RM07R 381,689 98.15 74.09 2.71E+13
torso3 259,156 17.09 63.80 3.11E+11

Table I: List of Matrices used for performance evaluation.

Test-bed IVB20C BABBAGE

Host

CPU Micro-architecture Ivy Bridge-EP Sandy Bridge-EP
Sockets/Cores/Threads 2/20/40 2/16/32
Clock rate 2.80GHz 2.60GHz
DRAM capacity 128 GB 128 GB
Stream bandwidth 95 GB/s 72 GB/s
Peak DP floating point
performance

448 GF/s 332 GF/s

PCIe type-Bandwidth PCIe 2.0-8 GB/s PCIe 2.0-8 GB/s

MIC

#MIC per node 1 2
Clock rate 1.09 GHz 1.05 GHz
Cores/Threads 61/244 60/240
Stream bandwidth 163 GB/s 150 GB/s
Peak DP floating point
performance

1063 GF/s 2×1008 GF/s

Table II: Testbeds used for performance evaluation.

close to stream bandwidth, denoted Bstream. Therefore, on the
CPU, we estimate tSCATTER as sum of all the memory operations
divided by the stream bandwidth.

On MIC, even if we use all of the cores, the achieved
bandwidth for SCATTER operations depends more sensitively
on the input operands sizes and their distribution. Therefore,
MDWIN takes the distribution of sizes of blocks into account.
Similar to the case of GEMM, we create a lookup table for the
bandwidth achieved when scattering blocks of different sizes.
This lookup table comes from running a microbenchmark.
Such a table appears graphically in fig. 6. When we SCATTER
the (i, j)-th block of size bx×by , we estimate the time spent as
3bxby/B(bx, by), where B(bx, by) is the value obtained from
the lookup table. Thus, t(φ)SCATTER is estimated as,

t
(φ)
SCATTER =

∑
i, j

3bx(i)by(j)

B(bx(i), by(j))
. (6)

MDWIN is carefully implemented to reduce any overheads.
Empirically, MDWIN’s overhead is less than 2% of the total
factorization time across our experiments (not shown here).

VI. EXPERIMENTS AND RESULTS

A. Experimental setup

Test Matrices: The matrices used in our tests are listed
in table I. These matrices, taken from the University of
Florida Sparse Matrix Collection, come from various real
applications [10]. These matrices vary in sparsity structure,
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Figure 7: Comparison of model-driven work partitioning scheme
to two static work partitioning scheme

which in turn affects the sparsity of the L and U factors,
the factorization time, and the overall flop rates for the
factorization.

Testbeds: We used two systems in the performance evalua-
tion: IVB20C, which is a single-node 2×10-core Ivy Bridge-
EP machine with a Intel Xeon Phi co-processors; and BAB-
BAGE, which is a 45-node 2×8-core Sandy Bridge-EP with
two Xeon-Phi cards machine, located at NERSC. The key
machine parameters for the two systems are listed in table II.

We used the Intel C Compiler (ICC 15.0.0) with Intel MPI
Runtime Library (IMPI 5.0) and Intel Math Kernel Library
(MKL) version 11.1.

In all the experiments, we used the default settings for
SUPERLU_DIST: ordering via Metis on |A|+ |A|T and static
pivoting and equilibration via MC64. The maximum size for
any supernode was set to 192. Typically, a small supernode
size eases load balance among different MPI processes; there-
fore, we chose a small supernode size where both the GEMM
and SCATTER kernels obtain reasonable performance on both
CPU and MIC.

For large matrices, we limited the user allocated memory
on MIC to 7 GB. For the distributed experiments, for a given
number of MPI processes, we tried different combinations
of Pr × Pc on unaccelerated SUPERLU_DIST, and used the
best configuration when running either with and without MIC
acceleration.

We studied various single node characteristics of HALO
on IVB20C. For comparison, we used multithreaded SU-
PERLU_DIST as our baseline. This baseline uses OpenMP
threads across 20 Ivy Bridge cores, and is denoted by
OMP(p).3
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B. Performance of model-driven work partitioning MDWIN

We evaluated the efficacy of MDWIN (see § V-B) by com-
paring its performance against two static work partitioning
schemes, denoted STATIC0 and STATIC1. Both STATIC0 and
STATIC1 assign a fixed fraction, called the offload-fraction, of
columns of U(k) to MIC, to divide work between the CPU
and the MIC in each iteration. In addition, STATIC1 does not
offload any work to MIC in some iteration, if operand sizes
are smaller than a fixed cut-off.4

We used four matrices for comparison. For each matrix, we
vary the offload-fraction to find its optimal value (fig. 7). For
both STATIC0 and STATIC1, for different matrices, the optimal
offload-fraction occurred at different values. This illustrates
the main limitation of such a fixed static partitioning scheme,
which is that we cannot tune the offload-fraction for one matrix
and use it for other matrices. In addition, a bad choice of the
offload-fraction may slow down the computation by 10×, e.g.,
in case of STATIC0 and torso3 combination.

For all the matrices, MDWIN outperformed STATIC0 and
STATIC1. Even in an especially difficult case (e.g., torso3),
MDWIN incurred only a small slow down (1.1×) versus 1.4–
10× of STATIC0 and STATIC1.

C. Effect of limited MIC memory

We wish to see how well HALO performs on an accelerator
whose memory is much smaller than the host’s memory. To do
so, we vary the fraction of the matrix in the MIC, to simulate
acceleration with a small memory constraint, and see its effect
on the number of flops offloaded. For this experiment, we use
two matrices: (1) nd24k that can completely fit in the MIC’s
memory, and (2) nlpkkt80 cannot.

In fig. 8 (left), the fraction of offloaded flops increases
steeply as the matrix fraction stored on the MIC increases.
For both the matrices, by only keeping 17% of the matrix

3It is the strongest of all possible baselines to which the MIC-accelerated
version can be directly compared.

4We use mt = nt = 512, kt = 16 as cut-offs, selected based on the
relative performance of GEMM (fig. 5).

in the MIC, we are able to offload more than 70% of the
number of flops that we offload if the MIC has infinite memory.
Thus, HALO can gracefully handle the relatively low memory
capacity of the MIC.

In the fig. 8, we also show the speedup obtained. For large
matrices, such as nlpkkt80, MIC-acceleration becomes more
critical. Thanks to HALO, speedups for such a large matrix is
close (within 10%) to the best small matrices case.

D. Single node performance on IVB20C

In our single node experiment, we seek to understand gains
of MIC acceleration for different matrices. We compare the
following two configurations of SUPERLU_DIST on IVB20C:
• OMP(p) (Baseline)
• OMP(p)+MIC: OMP(p) added with MIC acceleration.
For these two configurations, table III breaks down the fac-

torization time and the obtained speedup. Overall, offloading
the Schur-complement update to the MIC makes it faster by
ηsch=0.9−1.8×, which results in an overall speed-up (ηnet)
of 0.9-1.7×. In addition to ηsch, overall speedup (ηnet) also
depends on the time spent in panel-factorization computations
(tpf ), also shown in table III. In 8 out of 10 test cases, tpf—
being less than 20% of the baseline—is not the bottleneck.

Overall, the gains from HALO vary for different matrices.
In our analysis, we treat total the factorization time (tomp),
the panel-factorization time (tpf ), and ηsch as independent
quantities. However, they are related to the sparsity pattern
of the input matrix, and can be inter-related. For example, the
matrices torso3 and dielFilterV3real are among the smallest in
factorization time; they both also show a large tpf and a small
ηsch. Therefore, the study of the effects of sparsity-pattern on
the performance of HALO is warranted.

E. Offload efficiency

We estimate the performance of HALO in the absence of any
load imbalance. Load imbalance can be due to limited MIC
memory, exposed PCIe communication and latency costs, or
the limitations of MDWIN. Furthermore, it can cause the CPU
and the MIC to idle, which would manifest as nonzero tcpu_idle
and tmic_idle values in table III. In a hypothetical case where
there are no load imbalances and PCIe communication has
zero cost (due to either hardware or software improvements),
if time for factorization is tideal, then offload efficiency ξ is
given by tideal

tmic
. To calculate offload efficiency, we estimate

tideal by making a simplifying assumption, which is that the
incurred load imbalance can be shared equally between the
CPU and the MIC. In other words, in the absence of any load
imbalance, the factorization time of the HALO can be reduced
further by (tcpu_idle+tmic_idle)/2. Thus,

ξ = 1− tmic_idle + tcpu_idle

2tmic
. (7)

This value ranges from between 0.5 (only one resource, CPU
or MIC, is working and the other is completely idle) and
1.0 (both CPU and MIC are working and perfectly load-
balanced). We evaluate eq. 7 and show it in the last column



Factorization time (in sec.) Speed-up Miscellaneous time (OMP(p)+MIC)

Matrix
OMP(p)
(tomp)

OMP(p)+MIC

(tmic)
Panel-fact.

(tpf )‡
Schur-Comp.

Update (ηsch)
Overall
(ηnet)

tcpu_idle
† tmic_idle

† tpcie
† Offload

efficiency(ξ)

Fits in
MIC

memory

H2O 41.9 28.3 4.3% 1.5 1.5 6.12% 32.4% 9.7% 80.7%
nd24k 28.2 16.4 7.3% 1.8 1.7 4.9% 29.4% 7.6% 82.85%
torso3 4.2 4.5 35.2% 0.9 0.9 7.9% 72.6% 4.8 % 59.7%

Does not
fit in
MIC

memory

atmosmodd 64.2 43.4 14.1% 1.6 1.5 7.35% 50.8% 5.7% 70.3%
audikw_1 50.3 33.7 16.1% 1.6 1.5 6.37% 49.5% 5.7% 72.4%

dielFilterV3real 15.5 14.3 39.5% 1.1 1.1 2.7% 74.8% 6.4% 62.3%
Ga19As19H42 224.3 165.8 2.9% 1.4 1.4 1.8% 59.6% 2.1% 69.3%

Geo_1438 136.6 96.1 10.8% 1.5 1.4 1.34% 67.6% 2.7% 65.4%
nlpkkt80 123.9 77.6 9.5% 1.7 1.6 0.44% 64.0% 2.9% 67.8%
RM07R 136.3 87.6 5.7% 1.6 1.6 5.0% 54.9% 6.1% 70.0%

Table III: Factorization time of OMP(p) and OMP(p)+MIC for different matrices on the single node IVB20Csystem. ‡: Time shown is
a percentage of tomp. †: Time shown is a percentage of the tmic. Overall speedup ηnet ranges from 0.9 to 1.7×, and depends on the
unaccelerated fraction (tpf ) and speedup obtained in MIC-accelerated Schur-complement update (ηsch). The last four columns show the idle
time of the CPU and the MIC, the PCIe transfer time, and the estimated offload efficiency.

of table III. For many matrices, our implementation already
achieves within 30% of the upper bound, and achieves close
to 83% for nd24k. For bigger matrices, due to limited MIC
memory, the offload efficiency hovers around 70%.

F. Single node performance on BABBAGE

Each node on BABBAGE has 2×8-core Sandy-Bridge sock-
ets and two MICs. To use the both MICs, we spawn two
MPI processes on each node and assign each MPI process
a MIC. In addition to the shared memory configurations
OMP(p)and OMP(p)+MIC, we also compare the following
distributed memory configurations on BABBAGE:
• MPI(p)+OMP(q): One MPI process on each socket and

uses OpenMP multi-threading at socket level; and
• MPI(p)+OMP(q)+MIC: MPI(p)+OMP(q)added MIC accel-

eration for each MPI process.
The factorization time on BABBAGE for the different con-

figurations and matrices appears in fig. 9. The time for each
configuration is split into the panel-factorization and the Schur-
complement update phases. Note that the panel-factorization
phase in MPI(p)+OMP(q) and MPI(p)+OMP(q)+MIC now in-
clude the time for MPI_Send, MPI_Recv and MPI_Wait.
Therefore, tpf increases when we go from shared memory
to distributed memory configuration. On the other hand, the
Schur-complement update phase shows better scalability in
MPI(p)+OMP(q) configuration due to absence of any NUMA
overheads.

Overall, when we include another MIC, we can improve
the performance by additional 1.1-1.8×. This performance
improvement comes from two sources. First, we offload more
computation to the MIC since relative performance of the
MIC with respect to the host CPU has increased. Secondly,
for large matrices such as RM07R and Ga19As9H42, where
only a small fraction of the matrix can fit in one MIC, the
increased fraction of the matrix fits in two MICs. Thus, more
computation can be offloaded to the MIC.

G. Strong scaling on BABBAGE

We study strong scaling of HALO to understand the effects
of MIC-acceleration when we scale SUPERLU_DIST to a large
number of nodes. For this experiment, we use two matrices,
RM07R and nlpkkt80, and we scale up to 32 nodes in two MPI
processes per node configuration.

Figure 10 shows the scaling of the panel-factorization
and Schur-complement update phases of computation. As a
reference, we also give the scaling results for the baseline
SUPERLU_DIST.

The Schur-complement update phase for both matrices and
both configurations scales almost linearly with number of MPI
processes, while the panel-factorization phase does not. Thus,
at 64 MPI processes, the cost of panel-factorization dominates.
HALO’s scalability is affected even more than the baseline,
since its Schur-complement update cost is smaller.
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Figure 11: Strong scaling on BABBAGE: speedup of
Schur-complement update ηsch and overall speedup ηsch of
MPI(p)+OMP(q)+MIC with respect to MPI(p)+OMP(q) for different
number of MPI processes.

Figure 11 shows the speedup of HALO over the baseline.
The speedup in the Schur-complement update phase, ηsch,
increases when we go from two to four MPI processes. This
increased speedup is due to an increased fraction of the matrix
residing on the MICs. When we go beyond four processes,
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Figure 9: Performance for different matrices and different configuration of SUPERLU_DIST on the single node of the BABBAGE cluster.
The configurations OMP(p) and MPI(p)+OMP(q) use only CPU cores, while OMP(p)+MIC and MPI(p)+OMP(q)+MIC, in addition to CPU
cores, use one and two MICs, respectively. On top of each matrix×configuration bar, we show the speedup with respect to OMP(p). Overall,
we obtain an additional 1.1-1.8× speedup when we use an additional MIC.
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Figure 10: Strong scaling of the baseline (MPI(p)+OMP(q)) and MIC-accelerated (MPI(p)+OMP(q)+MIC) configurations on BABBAGE. For
both matrices, the panel factorization phase (tpf ) does not scale as well as the Schur-complement update. Therefore, at a large number of
processes, panel factorization will become bottleneck.

the per iteration work of the Schur-complement update phase
decreases; thus, ηsch also gracefully decreases, reducing to
about 1.5× at 64 MPI processes. This ηsch, however, results
in an overall speedup (ηnet) of only 1 to 1.25×, as the
panel-factorization phase dominates the total time at 64 MPI
processes.

VII. RELATED WORK

A number of studies have reported GPU-accelerated mul-
tifrontal [11] sparse direct solvers in the case of a single
node [3]–[7], [12], [13]. In the case of a distributed het-
erogeneous cluster, we have developed for the first time, a
distributed and GPU-accelerated implementation that extends
SUPERLU_DIST [2]. All of these approaches, including our
own GPU implementation, accelerate by only offloading dense

BLAS subproblems. Considering a larger domain of linear
system solvers, there has been additional work involving
GPUs on dense direct solvers [14], [15] and sparse iterative
solvers [16].

HALO is distinct from this prior art. First, our choice of
SUPERLU_DIST is algorithmically different from multifrontal
methods, which other efforts address. Secondly, to our knowl-
edge HALO is the first published attempt to use MIC-based
acceleration for a sparse direct solver. Thirdly, we offload
not only dense BLAS subproblems, but also SCATTER (see
§ IV). As SCATTER can quickly become the bottleneck [2],
this enhancement is significant.

Our interest in MIC stems from its emergence as a viable
GPU alternative, as is evident by its presence on, for instance,
the Top500 and Green500 lists [17], [18]. There are numer-



ous reports of successful MIC-acceleration for a variety of
scientific problems [19]–[22]. A sparse direct solver presents
unique challenges of moderate and highly-variable arithmetic
intensity, which makes it neither purely compute-bound nor
purely memory bandwidth-bound.

VIII. CONCLUSIONS AND FUTURE WORK

None of the technical components of HALO are specific
to MIC, meaning the same ideas should extend naturally to
GPU-based clusters or other heterogeneous node architectures.
However, architectural difference between GPU and MIC may
result in different relative performance profiles for different
operand sizes. We are working on a combined software infras-
tructure that can exploit either or both types of accelerators.

At a sufficiently large number of MPI processes, one should
expect the time spent in panel-factorization phase to begin to
dominate. This would happen primarily because of increasing
load imbalance among the processes, which leads to increases
in MPI_Wait and MPI_Recv times. This problem could be
avoided if the bottleneck process could assign more work to its
accelerator, as a way of reducing the apparent load imbalance.
However, knowing precisely when to do so would require
a scheme to estimate time at a global level, which would
have to include modeling of potential load imbalance and MPI
communication costs. This topic is an excellent one for future
work.

Part of the proposed scheme targets the relatively smaller
memory capacities of accelerators compared to their hosts.
However, an intrinsic problem is that the per-process memory
requirement tends to increase as the number of processes
increases. In this sense, accelerators can help by decreasing the
need for more MPI processes. Nevertheless, a more formal and
precise understanding of this issue would be needed to scale
sparse direct solvers to the next level.
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