
A distributed CPU-GPU sparse direct solver

Piyush Sao1, Richard Vuduc1, and Xiaoye Li2

1 Georgia Institute of Technology, {piyush3,richie}@gatech.edu
2 Lawrence Berkeley National Laboratory, xsli@lbl.gov

Abstract. This paper presents the first hybrid MPI+OpenMP+CUDA
implementation of a distributed memory right-looking unsymmetric sparse
direct solver (i.e., sparse LU factorization) that uses static pivoting.
While BLAS calls can account for more than 40% of the overall fac-
torization time, the difficulty is that small problem sizes dominate the
workload, making efficient GPU utilization challenging. This fact moti-
vates our approach, which is to find ways to aggregate collections of small
BLAS operations into larger ones; to schedule operations to achieve load
balance and hide long-latency operations, such as PCIe transfer; and to
exploit simultaneously all of a node’s available CPU cores and GPUs.

1 Introduction

Given a sparse matrix A, we consider the problem of factoring it into the product
A = L ·U , where L is a unit lower triangular matrix and U is an upper triangular
matrix. This problem (“sparse LU”) is usually the most expensive step in a sparse
direct solver, the use of which appears in a variety of computational science and
engineering applications. It typically needs a lot of memory, thereby benefiting
from the use of a distributed memory system. A natural question is, given the
increased reliance on some form of GPU-like acceleration for such systems, how
to exploit all forms of available parallelism, whether distributed memory, shared
memory, or “accelerated.”

The challenge is that sparse LU factorization is, computationally, neither
strictly dominated by arithmetic, like high-performance LINPACK is when A is
dense, nor is it strictly dominated by communication, as is often the case with
iterative linear solvers. Thus, it is an open question whether or by how much we
should expect to speed up sparse LU factorization using distributed CPU+GPU
machines [9]. Additionally, the facts of indirect irregular memory access, irregu-
lar parallelism, and a strong dependence on the input matrix’s structure—known
only at runtime—further complicate its implementation. These complications re-
quire carefully designed data structures and dynamic approaches to scheduling
and load balancing. Indeed, perhaps due to these myriad issues, there are many
studies offering distributed algorithms and hybrid single-node CPU+GPU im-
plementations but, to date, no fully distributed hybrid CPU+GPU sparse direct
solver of which we are aware (§ 2).

This paper presents the first such algorithm and implementation that can run
scalably on a cluster comprising hybrid CPU+GPU nodes. We extend an exist-
ing distributed memory sparse direct solver, SuperLU_DIST [5], by adding

CPU multithreading and GPU acceleration during the LU factorization step.
To effectively exploit intranode CPU and GPU parallelism, we use a variety of
techniques (§ 4). These include aggregating small computations to increase the
amount of compute-bound work; asynchronously assigning compute-bound work
to the GPU and memory-bound work to the CPU, thereby minimizing CPU-
GPU communication and improving system utilization; and careful scheduling
to hide various long-latency operations. We evaluate this implementation on test
problems derived from applications (§ 5). We show speedups of over 2× (§ 5) over
a highly scalable MPI-only code; and, provide the required explanation when our
approach does not yield speedups.

2 Related work

The last five years have seen several research developments on accelerating sparse
factorization algorithms using GPUs. Most of these efforts rely on the GPU for
solving large dense matrix subproblems, performing any other processing on
the host CPU with data transfer as needed. There exist methods for multi-
frontal Cholesky [4, 12, 9, 6]; and, in single-precision, left-looking sparse LU [8].
In essence, all of these methods use the GPU as a BLAS accelerator.

George et al. go beyond BLAS acceleration for their single-node multifrontal
sparse Cholesky algorithm, implemented in WSMP [3]. They examine three
compute-intensive kernels associated with each frontal matrix: factoring the di-
agonal block, triangular solution, and Schur complement update. These compu-
tations are selectively offloaded to the GPU depending on the workload distri-
bution of the flops, which in turn depends on the input matrix. Their method
achieves 10-25× speedups over a single-core.

Yeralan et al. developed a sparse multifrontal QR factorization algorithm
using one CPU-GPU combination [11]. Since sparse QR has intrinsically higher
arithmetic intensity than sparse LU, the pay-off of GPU acceleration should be
higher.

Our approach also offloads the most arithmetic-intensive part of the work-
load to GPUs. However, one distinction of our work is that we aim to exploit
the maximum available parallelism of a distributed memory system, namely,
distributed memory parallelism via MPI combined with intranode parallelism
through multithreading and GPU acceleration. While our implementation is spe-
cific to SuperLU_DIST, we believe techniques discussed in this paper can be
extended to other direct solvers.

3 Overview of SuperLU_DIST

Solving a linear system Ax = b using SuperLU_DIST involves a number of
steps [10, 7]. However, the most expensive step is numerical factorization, which
is the focus of this paper. For test matrices in our study, numerical factorization
accounts for at least 75% of the total solve time, and in fact more often accounts

Algorithm 1 SuperLU_DIST Numerical Factorization
1: for k = 1, 2, 3 . . . ns do

Panel Factorization
2: Column computation of L:,k.
3: if pid ∈ Pc(k) then
4: compute the block column Lk:ns,k

5: (communicate Uk,k among Pc(k))
6: send Lk:ns,k to required processes in Pr(:)
7: else
8: receive Lk:ns,k if required

Row computation of Uk,:.
9: if pid ∈ Pr(k) then
10: wait for Uk,k

11: compute the block row Uk,k+1:ns

12: send Uk,k+1:ns to required processes in Pc(:)
13: else
14: receive Uk,k+1:ns if required

Schur Complement Update
15: if L:,k and Uk,: are locally non-empty then
16: for j = k + 1, k + 2, k + 3 . . . ns do
17: for i = k + 1, k + 2, k + 3 . . . ns do
18: if pid ∈ Pr(i) ∩ Pc(j) then
19: Ai,j ← Ai,j − Li,kUk,j

for 90% or more. Therefore, we focus on just the numerical factorization phase.
Accelerating the remaining steps is a good avenue for future research.

SuperLU_DIST uses a fan-out (right-looking, outer-product) supernodal
algorithm. A supernode is a set of consecutive columns of L with a dense trian-
gular block just below the diagonal and with the same nonzero structure below
the triangular block. To achieve good parallelism and load balance, the MPI
processes are assigned to the supernodal blocks in a 2D cyclic layout.

Algorithm 1 shows the pseudocode of the factorization algorithm, where ns

is the number of supernodes, pid is the ID of this process, and Pc(k) and Pr(k)
are the groups of processes assigned to the k-th supernodal column and the k-
th supernodal row, respectively. Step 1 is the k-th panel factorization, where
the k-th supernodal column of L and the k-th supernodal row of U are com-
puted. Subsequently, each process in Pc(k) and Pr(k) sends its local blocks of
the factors to the processes assigned to the same row and column, respectively.
Consequently, Step 2 updates the trailing submatrix using the k-th supernodal
column and row of the LU factors. The block Ai,j is updated only if both blocks
Li,k and Uk,j are not empty. A more detailed description appears elsewhere [10].

4 New Intranode Enhancements

Our work enhances the intranode performance and scaling of alg. 1. The panel
factorization and row computation phases primarily are concerned with commu-

nication. By contrast, the Schur complement update phase (lines 15–19) is the
local computation that dominates intranode performance. Thus, it is our main
target for optimization.

Baseline Schur complement update. The Schur complement update step at iter-
ation k of alg. 1 computes Ak+1,ns:k+1,ns as

Ak+1,ns:k+1,ns
= Ak+1,ns:k+1,ns

− Lk+1:ns,kUk,:k+1:ns
. (1)

SuperLU_DIST uses an owner-computes strategy, where each process updates
the set of blocks, {Ai,j}, which it owns once it has received the required blocks
L:,k and Uk,:.

Each GEMM subproblem computes one Ai,j , which is line 19 of alg. 1. In the
baseline SuperLU_DIST implementation, a process updates each of its Ai,j

blocks in turn, traversing the matrix in a columnwise manner (outermost j-loop
at line 18 of alg. 1). The update takes place in three steps: packing the U block,
calling BLAS GEMM, and unpacking the result. We refer to the first two steps
as the GEMM phase, and the last step as the Scatter phase.

Packing allows the computation to use a highly optimized BLAS implemen-
tation of GEMM. Packing converts the Uk,j , which is stored in a sparse format,
into a dense BLAS-compliant column major format, Ũk,j . This packing takes
place once for each Uk,j . The Li,k operand need not be packed, as it is already
stored in a column major form as part of a rectangular supernode.

The second step is the BLAS GEMM call, which computes V ← Li,kŨk,j ,
where V is a temporary buffer.

The final Scatter step updates Ai,j by subtracting V from it. Since only the
nonzero rows of L and U are stored, the destination block Ai,j usually has more
nonzero rows and columns, than Li,k and Uk,j . Thus, this step must also map
the rows and columns of V to the rows and columns of Ai,j before the elements
of Ai,j can be updated, which involves indirect addressing. This final unpacking
step is what we refer to as the Scatter phase.

Aggregating small GEMM subproblems. Relative to the baseline (above), we
may increase the intensity of the GEMM phase by aggregating small GEMM
subproblems into a single, larger GEMM. This aggregated computation then
becomes a better target for GPU offload, though it also works well even in the
multicore CPU-only case.

Our approach to aggregation, illustrated in fig. 1, has two aspects. First,
we process an entire block column at once. That is, instead of calling GEMM
for every block multiply Li,kŨk,j , we aggregate the L-blocks in column k into a
single GEMM call that effectively computes V ← Lk+1:ns,kŨk,j , thereby reusing
Ũk,j . Secondly, the packed block Ũk,j may still have only a few nonzero columns.
Thus, we group multiple consecutive U -blocks to form a larger Ũk,jst:jend

block,
where jst and jend are the starting and the ending block indices. This large block
has some minimum number of columns Nb, a tuning parameter. We schedule

L:,k

}

L:,k V

Uk,:
~

V L:,kUk,:
~

GEMM-Phase Scatter-Phase

Uk,:}

Fig. 1: Aggregating Small GEMM subproblems

}

}

C
U

D
A

St
re

am
s

}

C
P

U

Stream-intialize First block column

on CPU

} }

Scatter rest of the block columns

on CPU

L U1
~

U2
~

iU
~

iU
~

LVi

1U
~

LV1

2U
~

LV2

0U
~

LV0

V1

V2

Vi

V1Scatter()V0Scatter() V2Scatter()

}

Wait

Host to GPU data transfer

GPU to host data transfer

Fig. 2: Overlapping GEMM with Scatter

the computation of Lk+1:ns,kŨk,jst:jend
onto the GPU, using CUDA streams as

explained below.
Aggregation may increase the memory footprint relative to the baseline. In

particular, we may need to store a large U -block, Ũ , and a large intermediate
output, V . Our implementation preallocates these buffers, using Nb as a tunable
parameter to constrain their sizes.

Pipelined execution. Given aggregated GEMMs, we use a software pipelining
scheduling scheme to overlap copying the GEMM operands to the GPU with
execution of both the GEMMs themselves as well as the CPU Scatter.

Our pipelining scheme, illustrated in fig. 2, uses CUDA’s streams facility.
Our scheme divides Ũ into ns partitions, where ns is the number of desired
CUDA streams, a tuning parameter. To perform this division, our scheme first
ensures that each partition has a minimum of Nb columns. It also ensures that
the number of columns in each partition does not cross the boundary of the
block columns. It then uses a greedy algorithm to ensure that each partition has

a number of columns of at most the average number of columns, except for the
last partition which has all the remaining columns.

The pipelining begins with the transfer of L to the GPU. Now each CUDA
stream asynchronously initializes transfer of i-th partition, Ũi, and a CUDA
BLAS GEMM call to perform Vi ← LŨi, and transfer of Vi to the host. Once Vi

is copied back to the host, this Vi is scattered as soon as possible. We schedule the
GEMM and scatter of the first block column on CPU. This is done to minimize
idle time of CPU, while it waits for the first CUDA stream to finish transferring
the V1. Note that CUDA streams mainly facilitates overlap of CPU, GPU, and
PCIe transfer. The streams themselves may, but do not necessarily, overlap

CUDA streams facility carries a nontrivial setup overhead. Suppose asyn-
chronous CUDA calls take time ts to initialize, and the effective floating-point
throughput of the CPU is Fcpu operations per unit time. Then, offloading fewer
than tsFCPU would be slower than executing on the host. Our implementation
uses such a heuristic to decide whether offloading a particular GEMM phase to
the GPU will pay off, or otherwise executes on the CPU.

OpenMP parallelization of Scatter. We parallelized Scatter using OpenMP. There
are a number of ways to assign blocks to be scattered to threads. Prior work on
SuperLU_DIST used a block cyclic assignment [10]. However, we discovered
by experiment that particular static assignment can lead to severe load imbal-
ance. In addition, assigning one block to a thread can be inefficient since many
blocks may have very little work in each, leading to an overly fine grain size.

We address these issues as follows. When there are a sufficient number of
block columns, we schedule the Scatter of the entire block column to one thread
using OpenMP’s guided scheduling option. We also tried dynamic scheduling
options, but for our test cases, there was no significant difference in performance.
When there are fewer block columns than the number of threads, we switch from
parallelizing across block columns to parallelizing across block rows.

In addition, we also use OpenMP to parallelize the local work at the looka-
head phase and the panel factorization phase. However, doing so does not affect
performance by much because these phases are dominated by MPI communica-
tion.

5 Experiments and Results

We used two GPU clusters in our evaluation (table 2). We tested our implemen-
tations on the input matrices in table 2, which derive from real applications [2].

We evaluated 6 implementation variants. (All variants use double-precision
arithmetic, including on the GPU.) The baseline is SuperLU_DIST. We mod-
ified this baseline to include the BLAS aggregation technique of § 4. Since
all variants derive from SuperLU_DIST, they all include distributed memory
parallelism via MPI. Their mnemonic names describe what each variant adds to
the MPI-enabled baseline.

Parameter Jinx-Cluster Dirac-GPU test bed

GPUs per node 2 1
Type of GPU Tesla M2090 “Fermi” Tesla C2050 “Fermi”

GPU double-precision peak 665 GF/sec 515 GF/sec
GPU DRAM / Bandwidth 6 GB / 177 GBytes/sec 3 GB / 144 GBytes/sec

Host Intel Xeon X5650 @2.67 GHz Intel Xeon X5530 @2.4 GHz
PCIe / Bandwidth PCIe x16 /8GB/s PCIe x16 /8GB/s

Sockets × Cores / socket 2× 6 2× 4
CPU double-precision peak 128 GF/sec 76.8 GF/sec

L3 Cache 2 × 12M 2× 8M
Memory 24GB 24GB

Network /Bandwidth InfiniBand/ 40 Gbit/s InfiniBand/ 32 Gbit/s
Table 1: Evaluation testbeds for our experiments

Name n nnz nnz
n

symm Fill-in Ratio Application

audikw_1∗ 943695 77651847 82.28 yes 31.43 structural problem
bone010∗ 986703 47851783 48.49 yes 43.52 model reduction problem
nd24k∗ 72000 28715634 398.82 yes 22.49 2D/3D problem
RM07R∗ 381689 37464962 98.15 no 78.00 computational fluid dynamics
dds.quad† 380698 15844364 41.61 no 20.18 cavity
matrix211† 801378 129413052 161.48 no 9.68 Nuclear Fusion
tdr190k† 1100242 43318292 39.37 no 20.43 Accelerator

Ga19As19H42∗ 133123 8884839 66.74 yes 182.16 quantum chemistry problem
TSOPF_RS_b2383_c1∗ 38120 16171169 424.21 no 3.44 power network problem

dielFilterV2real∗ 1157456 48538952 41.93 yes 22.39 electromagnetics problem

Table 2: Different test problems used for testing solvers. ∗ See the University of
Florida Sparse Matrix Collection [2]; † from NERSC users

– MKL1 is the baseline, based on SuperLU_DIST Version 3.3 “out-of-the-
box.” It uses MPI-only within a node and uses Intel’s MKL, a vendor BLAS
library, running in single-threaded mode. This implementation is what we
hope to improve by exploiting intranode parallelism. Unless otherwise noted,
we try all numbers of MPI processes within a node up to 1 MPI process per
physical core, and report the performance of the best configuration.

– MKLp is the same as MKL1, but with multithreaded MKL instead. It uses 1
MPI process per socket; within each socket, it uses multithreaded MKL with
the number of threads equal to the physical cores per socket.

– {cuBLAS,Scatter} is MKLp but with most GEMM calls replaced by their
NVIDIA GPU counterpart, via the CUDA BLAS (or “cuBLAS”) library.
(Any other BLAS call uses MKLp.) Additionally, cuBLAS may execute asyn-
chronously; therefore, there may be an additional performance benefit from
partial overlap between cuBLAS and Scatter, as the mnemonic name sug-
gests. Like MKL1, we try various numbers of MPI processes per node and re-

port results for the best configuration. (When there are more MPI processes
than physical GPUs, the cuBLAS calls are automatically multiplexed.)

– OpenMP+MKL1 exploits intranode parallelism explicitly using OpenMP. It par-
allelizes all phases using OpenMP. For phases that use the BLAS, we use
explicit OpenMP parallelization and with single-threaded MKL. Scatter and
GEMM phases run in sequence, i.e., they do not overlap.

– OpenMP+{MKLp,cuBLAS} shares the work of the GEMM phase between both
the CPU and GPU, running them concurrently. This tends to reduce the
time spent in GEMM compared to OpenMP+MKL1 implementation, but may
not hide the cost completely.

– OpenMP+{MKLp,cuBLAS,Scatter}+pipeline adds pipelining to OpenMP+{MKLp,cuBLAS}.
We use ns = 16 CUDA streams and Nb = 128.

The first three implementations use implicit parallelism via multithreaded or
GPU-accelerated BLAS; the last three involve explicit parallelism. We used
Xs = 144 as maximum supernode size. To profile the computation’s execution
time, we use TAU. When we evaluate memory usage, we use the IPM tool [1].

1.0x

1.5x
1.6x

2.5x
3.0x

0.7x

1.0x
1.1x

1.7x
1.9x

0.6x
0.7x

0.9x0.8x

1.0x

0.7x

0.9x
1.0x

1.1x

1.3x

0.4x

0.6x

1.1x
1.3x1.5x

1.0x

1.1x1.1x

1.7x
1.9x

0.5x

0.7x

1.1x

1.4x
1.6x

0.7x

1.4x
1.7x

2.3x
2.7x

0.6x
0.6x

0.8x

0.7x

0.8x

0.1x

0.1x

0.5x0.6x0.6x

audikw_1 bone010 dds.quad dielFilterV2real Ga19As19H42

matrix211 nd24k RM07R tdr195k TSOPF_RS_b2383_c1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0
1
2
3
4
5
6
7
8
9

10
11
12
13

mkl1
mklp

{cublas,scatter}

omp +mkl1

omp +{m
klp,c

ublas}

omp +{m
klp,c

ublas,scatter} +
pipelining

mkl1
mklp

{cublas,scatter}

omp +mkl1

omp +{m
klp,c

ublas}

omp +{m
klp,c

ublas,scatter} +
pipelining

mkl1
mklp

{cublas,scatter}

omp +mkl1

omp +{m
klp,c

ublas}

omp +{m
klp,c

ublas,scatter} +
pipelining

mkl1
mklp

{cublas,scatter}

omp +mkl1

omp +{m
klp,c

ublas}

omp +{m
klp,c

ublas,scatter} +
pipelining

mkl1
mklp

{cublas,scatter}

omp +mkl1

omp +{m
klp,c

ublas}

omp +{m
klp,c

ublas,scatter} +
pipelining

R
el

at
iv

e
tim

e

Scatter DGEMM Other

Fig. 3: Performance of different implementations for different test problems on
Jinx cluster. Each bar is labeled by its speedup relative to the baseline (MKL1).

Overall impact of intranode optimization. Our first analysis answers the ques-
tion, by how much can explicit intranode optimization techniques improve per-
formance above and beyond having a highly tuned multicore and/or GPU-
accelerated BLAS? These experiments use just two nodes of the cluster. The
results show best-case improvements of up to 3× using our techniques, and high-
light scenarios in which our methods may yield a slowdown.

We show results for the Jinx system in fig. 3. (Dirac results are similar [7],
and so omitted for space.) It shows time (y-axis) versus implementation variant
(x-axis) for a given matrix. The time is normalized to the baseline, with actual
baseline execution times in the range of 10 to 1,000 seconds (not shown). Each
bar breaks down the execution time into its components, which correspond to
different phases of SuperLU. The GEMM phase and Scatter phase are as
described in § 4. The Scatter phase includes any CUDA stream setup and
wait time. The “Other” phase has three major components: MPI_Wait, MPI_Recv,
and triangular solve. When phases may overlap, the bar shows only the visible
execution time, i.e., the part of the execution time that does not overlap. Thus,
the total height of the bar is the visible wall-clock time.

Both the MKLp and {cuBLAS,Scatter} variants are slower or just comparable
to MKL1 in many cases. Though they may improve GEMM, Scatter and Other
may slowdown since they tend to improve with more MPI processes. Thus, only
relying on accelerating BLAS calls—whether by multithreading or offload—tends
not to yield a significant overall speedup, and can in fact decrease performance.

The OpenMP+MKL1 variant reduces the cost of Scatter and Other phases com-
pared to MKLp and {cuBLAS,Scatter}. While Other for OpenMP+MKL1 is better than
with MKL1, Scatter is worse. OpenMP+MKL1 often matches the baseline MKL1. The
OpenMP+{MKLp,cuBLAS} variant reduces the time spent in GEMM compared to
OpenMP+MKL1 implementation, but cannot hide the cost of GEMM completely.

Our combined OpenMP+{MKLp,cuBLAS,Scatter}+pipeline implementation out-
performs MKL1 on 7 of the 10 test matrices on either platform, yielding speedups
of up to 3× (fig. 3, audikw_1). Compared to MKL1, this variant hides the cost
of GEMM very well. However, Scatter still cannot achieve the same paral-
lel efficiency as with MKL1. The worst case occurs with TSOPF_RS_bs2383_c1,
which derives from a power network analysis application. On Jinx, it is nearly
2× slower than MKL1 (fig. 3). However, even with a slowdown our implementation
can reduce the memory requirement of this problem; see below.

Strong Scaling. Part of the benefit of intranode parallelism is to enhance strong
scaling. We consider this scenario, for configurations of up to 8 nodes and 64
cores (Dirac) or 96 cores (Jinx), showing results for Jinx in fig. 4. (Dirac results
are better than Jinx [7].) We present results for just two “extremes”: Matrix
nd24k, on which our implementation does well, and TSOPF_RS_b2383_c1, on which
it fairs somewhat poorly.

We focus on three of our implementation variants: the baseline MKL1, OpenMP+MKL1,
and OpenMP+{MKLp,cuBLAS,Scatter}+pipeline. For the MKL1 variant, we use 1 MPI
process per core. For OpenMP+MKL1 and OpenMP+{MKLp,cuBLAS,Scatter}+pipeline
cases, we use 1 MPI process per socket and one OpenMP thread per core.

Total GEMM Scatter MPI Other
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

1/512

1/256

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1

2−12
2−11
2−10

1/512
1/256
1/128

1/64
1/32
1/16

1/8
1/4
1/2

1
2

nd24k
T

S
O

P
F

_R
S

_b2383_c1

1x6 1x122x124x128x121x6 1x122x124x128x121x6 1x122x124x128x121x6 1x122x124x128x121x6 1x122x124x128x12
(Nodes) x (Cores per node)

T
im

e
(s

ec
)

● mpi +omp +gpu

Fig. 4: Strong scaling on up to 8 nodes (96 cores and 16 GPUs) on Jinx

Figure 4 shows scalability as a log-log plot of time (y-axis) versus configu-
ration as measured by the total number of cores (x-axis). Each series shows one
of the three implementation variants. Each column is a phase, with the leftmost
column, Total, showing scalability of the overall computation, inclusive of all
phases. Time is always normalized by the total MKL1 time when running on the
smallest configuration (1 node and 1 socket), to reveal the relative time spent in
each phase. Dashed lines indicate ideal linear speedup for MKL1; perfect scaling
would be parallel to this line, while sublinear scaling would have a less steep
slope and superlinear scaling would have a more steep slope.

On Dirac (not shown), both test matrices exhibit good scaling behavior for
nearly all the phases; by contrast, Jinx scaling (fig. 4) exhibits sublinear be-
havior. At 96 cores and 16 GPUs (2 GPUs per node), all three implemen-
tations differ by only a little on nd24k. This is due largely to the relatively
poor scaling of the Other phase, which eventually becomes the bottleneck for
OpenMP+{MKLp,cuBLAS,Scatter}+pipeline.

On TSOPF_RS_b2383_c1, the baseline MKL1 is always fastest on both clusters,
when it ran successfully. On Jinx, there was not enough memory per node to ac-
commodate the 48 and 96 MPI processes cases, due to the fundamental memory
scaling requirement of SuperLU_DIST; for more analysis, see below.

Matrix TSOPF_RS_b2383_c1 case shows superlinear scaling. The Scatter phase
is a major contributing factor in cost. As noted previously, the Scatter phase
scales with increasing MPI processes, primarily due to better locality.

Overall, OpenMP+MKL1 shows good strong scaling. By contrast, the scaling of
OpenMP+{MKLp,cuBLAS,Scatter}+pipeline can be worse, as observed on Jinx. How-

nd24k tdr190k TSOPF_RS_b2383_c1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1
(MPI processes) x (OMP threads)

T
im

e
re

la
tiv

e
to

 8
x1

Component Factorization MPI

(a) Time in MPI vs. compute

nd24k tdr190k TSOPF_RS_b2383_c1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1 1x8 2x4 4x2 8x1
(MPI processes) x (OMP threads)

M
em

or
y

re
la

tiv
e

to
 8

x1

Component User MPI

(b) User vs. MPI-runtime memory

Fig. 5: Effect of intranode threading on memory and time

ever, this owes largely to Amdahl’s Law effects due to Other. That component
is primarily a triangular solve step, which our work has not yet addressed.

Time and memory requirements. Sparse direct solvers like SuperLU_DIST
may exhibit a time-memory tradeoff. We show an example on three representa-
tive problems in fig. 5. This example includes nd24k, which shows common-case
behavior; as well as TSOPF_RS_b2383_c1, which was a worst-case in execution time
for our approach. The experiment tests the OpenMP+MKL1 variant on one node of
Dirac, which has 8 cores per node, under all configurations of (# of MPI pro-
cesses) × (# of OpenMP threads) = 8.

Matrix TSOPF_RS_b2383_c1 exhibits the time-memory tradeoff. The Scatter
phase dominates execution time, as observed above; since Scatter scales with
MPI processes, the all-MPI configuration wins. However, memory usage actually
increases with increasing numbers of MPI processes. Among user allocated mem-
ory, it turns out that the memory required by the L and U factors remains fairly
constant, whereas the buffers used for MPI_Send and MPI_Recv increase. Memory
allocated by MPI runtime also increases. Thus, even if our intranode threading
approach is slower than the all-MPI case, there can be a large reduction in the
memory requirement.

6 Conclusions and Future Work

The high-level question this paper considers is how to exploit intranode par-
allelism in emerging CPU+GPU systems for distributed memory sparse direct
solvers. At the outset, one expects a highly tuned multicore and/or GPU BLAS

will yield much of the potential performance benefits. The real question, then, is
how much additional performance gain is possible from explicit parallelization.
Our results for SuperLU_DIST suggest that on today’s systems, there may be
up to a factor of 2× more to gain above and beyond BLAS-only parallelization.

Other avenues to pursue would include alternative accelerator platforms
(e.g., Intel Xeon Phi, near-memory processing solutions); accelerating the Scat-
ter phase, which requires extensive data structure changes; deeper architecture-
dependent performance analysis; and evaluation of time-energy tradeoffs, which
we believe are present intrinsically in the SuperLU_DIST algorithm.

References

1. IPM : Integrated performance monitoring. http://ipm-hpc.sourceforge.net/.
Accessed: 2014-01-26.

2. Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

3. T. George, V. Saxena, A. Gupta, A. Singh, and A. Choudjury. Multifrontal factor-
ization of sparse spd matrices on GPUs. In Proc. of IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2011), Anchorage, Alaska, May
16-20 2011.

4. G. Krawezik and G. Poole. Accelerating the ANSYS direct sparse solver with
GPUs. In Proc. Symposium on Application Accelerators in High Performance
Computing (SAAHPC), Urbana-Champaign, IL, NCSA, 2009. http://saahpc.
ncsa.illinois.edu/09.

5. Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Trans. Mathe-
matical Software, 29(2):110–140, June 2003.

6. R. Lucas, G. Wagenbreth, D. Davis, and R. Grimes. Multifrontal computations
on GPUs and their multi-core hosts. In VECPAR’10: Proc. 9th Intl. Meeting
for High Performance Computing for Computational Science, Berkeley, CA, 2010.
http://vecpar.fe.up.pt/2010/papers/5.php.

7. Piyush Sao, Richard Vuduc, and Xiaoye Li. A distributed CPU-GPU sparse direct
solver. Technical report, Georgia Institute of technology, 2014.

8. O. Schenk, M. Christen, and H. Burkhart. Algorithmic performance studies on
graphics processing units. J. Parallel and Distributed Computing, 68(10):1360–
1369, 2008.

9. R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure. On
the limits of GPU acceleration. In Proc. of the 2nd USENIX conference on Hot
topics in parallelism, HotPar’10, Berkeley, CA, 2010.

10. Ichitaro Yamazaki and Xiaoye S Li. New scheduling strategies and hybrid program-
ming for a parallel right-looking sparse LU factorization algorithm on multicore
cluster systems. In Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pages 619–630. IEEE, 2012.

11. S.N. Yeralan, T. Davis, and S. Ranka. Sparse QR factorization on gpu architec-
tures. Technical report, University of Florida, November 2013.

12. C.D. Yu, W. Wang, and D. Pierce. A CPU-GPU hybrid approach for the unsym-
metric multifrontal method. Parallel Computing, 37:759–770, 2011.

