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Particle-in-cell (PIC) simulation has been widely used in physics and engineer-
ing. In this paper, we give an analysis of the particle-field decomposition method
and the domain decomposition method in parallel particle-in-cell beam dynam-
ics simulation. The parallel performance of the two decomposition methods was
studied on the Cray XT4 and the IBM Blue Gene/P Computers. The domain de-
composition method shows better scalability but is slower than the particle-field
decomposition in most cases (up to a few thousand processors) for macroparticle
dominant applications. The particle-field decomposition method also shows less
memory usage than the domain decomposition method due to its use of perfect
static load balance. For application with smaller macroparticle number to grid
point ratio, the domain decomposition shows better scalability and faster speed.
Application of particle-field decomposition scheme to high resolution macropar-
ticle dominant parallel beam dynamics simulation for a future light source linear
accelerator is presented as an example.

I. INTRODUCTION

Particle-in-cell method (PIC) as a self-consistent particle simulation method has been widely
used in plasma physics, cosmology, and accelerator physics [1-3]. With the advent of high perfor-
mance large-scale parallel computers, this method was extended to run on those powerful computers
to reduce computing time and to explore high resolution physical simulation. In the accelerator
physics, parallel particle-in-cell beam dynamics simulation has been used to study collective effects
in high intensity, high brightness beams, to study colliding beams, and to explore advanced acceler-
ating method [4-12]. Most of those simulations used a standard domain decomposition method to
implement the particle-in-cell simulation on multiple parallel processors. In recent years, we have
also explored another parallel implementation method that is based on the particle-field decompo-
sition method [13]. In this paper, we will present an analysis of those two parallel implementation
methods on two currently leading parallel computers, Cray XT4, and IBM Blue Gene/P, with
a targeting goal of large-scale high resolution beam dynamics simulation in a linear accelerator
(linac) for future light source. These light sources provide coherent short wavelength (0.1 nm to
100 nm) radiations and present great opportunities for scientific discoveries in biology, chemistry,
material science and physics. In our target simulation, a high brightness electron beam from the
photoinjector will pass through a linear accelerator to gain enough energy (multi-GeV or more) for
generating short wavelength coherent radiation in an undulator. The quality and efficiency of such
a radiation heavily depends on the quality of the electron beam at the exit of the linear accelerator.
Large-scale high resolution beam dynamics simulation is needed in order to accurately predict and
to optimize the beam quality through the accelerator.

The organization of the paper is as follows: after the introduction, we will present a brief descrip-
tion of the particle-in-cell method in beam dynamics simulation in Section 2; the parallel domain
decomposition implementation method is discussed in Section 3; the particle-field decomposition
method is discussed in Section 4; the parallel performance studies are presented in Section 5; a
targeting application example is given in Section 6; and a summary is given in Section 7.



II. PARTICLE-IN-CELL METHOD IN BEAM DYNAMICS SIMULATION

In the accelerator particle-in-cell beam dynamics simulation, a number of macroparticles (i.e.
numerical simulation particle with the same charge-to-mass ratio as the real charged particle) are
generated from sampling a given initial distribution in phase space. The trajectories of those
charged macroparticles are tracked subject to both the external fields from the accelerating and
focusing element and the self-consistent electromagnetic (or electrostatic) space charge fields from
Coulomb interactions among charged particles. Figure 1 shows a schematic plot of single step
loop in the particle-in-cell beam dynamics simulation. It consists of two major parts: particle
advancement and self-consistent field calculation. Using a split-operator method with quasi-static
field approximation [14], the macroparticles are advanced in positions and momenta half a step
using an Hamiltonian corresponding to the external fields. Next, those macroparticles are deposited
onto a mesh grid in the moving beam frame to find the charge density on the grid. Then, the Poisson
equation is solved for potential on the grid using the deposited charge density. The electric fields
are calculated using the solution of electric potential on the grid. Those fields are transformed back
to the laboratory frame following the Lorentz transformation. The self-consistent Coulomb fields
are interpolated back onto individual macroparticle from the mesh grid. The macroparticles are
advanced for a full step using the Hamiltonian of the Coulomb fields. Finally, the macroparticles
are advanced in positions and momenta for another half a step using the Hamiltonian from the
external fields. This procedure gives a second order accuracy in step size and can be extended to
higher order accuracy using more substeps of particle advancement and field calculation [15]. Such
a single step loop is repeated for a number of times until the beam pass through the accelerator
structure.

In accelerator beam dynamics simulation, the transverse size of the beam is normally much
smaller than the aperture of conducting vacuum chamber. In this case, the beam is treated as an
isolated system. For such a well-isolated charged-particle beam, a 3D rectangular computational
box domain is used to contain only the beam itself. The sizes of the computational box are adjusted
at each time step according to the maximum and minimum amplitudes of the particles inside the
beam. The electric potential inside the beam can be computed using a Green’s function method
to solve the 3D Poisson equation. The numerical solution in the beam frame on a uniform mesh
can be written as
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where h;, hy, h, are the mesh size in each dimension, N,, Ny, N, are the mesh grid number in
each dimension, z; = (i — 1)hy, y; = (j — 1)hy, 2, = (k — 1)h, and the Green function G is given
by:
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The direct summation of above discrete convolution is computationally expensive and scales as
O(N:?N;NZZ). Fortunately, this summation can be replaced by a cyclic summation on a doubled

computational domain after redefining a new Green function and charge density function [1, 8, 16]:
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FIG. 1: A schematic plot of a single step loop in the particle-in-cell beam dynamics simulation.
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The above cyclic summation can be computed efficiently using the FFT method. This makes the
computational cost of solving the Poisson equation scale as O(NyNyN.log(N,;N,N)) instead of
O(N2N2N?).

IIT. PARALLEL DOMAIN DECOMPOSITION IMPLEMENTATION METHOD

In the domain decomposition method, the global computational domain defined on the mesh grid
is decomposed into a number of small blocks along one direction, two directions, or three directions
resulting in the so-called one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D)
domain-decomposition method. These blocks are mapped onto a logical Cartesian processor grid.
Fach processor contains one block domain with local computational boundary. The particles with
spatial positions inside the local computational boundary are assigned to the processor containing
that part of computational domain. Since the particles will move around during the process of
simulation, after each time step, the spatial coordinates of each particle are checked against the
local computational boundary. If they are outside the local boundary range, this particle is sent
to the neighboring processor through explicit communication for a new boundary check. This
process is repeated for a number of times until all particles are inside the boundary of their local
computational domain. A schematic plot of a one-dimensional decomposition of the computational
domain is shown in Fig. 2. The solid grid lines define the computational domain grids. The thick
solid lines define the local computational domain boundary on each processor. In this example, the
whole computational domain is decomposed into three blocks, each mapping onto a single processor
element (PE) along z dimension. The local range of the computational domain on each processor
is given as Ziemin < 2 < Ziemaz- Here, the subscripts lemin and lemaz specify local minimum and
local maximum in that dimension. The number of grids along this dimension on a single processor
is defined as
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FIG. 2: A schematic plot of the domain decomposition method in particle-in-cell simulation.

where hz are the mesh size along the z directions, and the quantity IV, refers to the number of guard
grids in the local computational domain. The guard grids are the grids added outside the boundary
grids for parallel simulation purpose. Here, the boundary grids are the outermost grids inside the
physical boundary. These guard grids are used as temporary storage of grid quantities from the
neighboring processors during the local neighboring communication. In practical applications,
a 2D or a 3D decomposition is used in order to maximize the ratio of the computation to the
communication.

After particles are moved to their local processor, the charge deposition can be done locally in
parallel for all processors. During this stage, the particles located between the boundary grid and
the local computational boundary will contribute not only to the local boundary grid in a linear
charge density deposition scheme but also contribute to the boundary grid of the neighboring
processor along z dimension. Neighboring communication is used among processors to exchange
the data on the guard grids. These data is added to the charge density on the boundary grid to
obtain the local density on the grid.

Using the local charge density on the grid, the Poisson equation is solved using the FFT-based
Green’s function convolution method that has a computational cost scales as O(Nlog(N)), where
N is the total number of grid points. In our beam dynamics simulation, since we use the FFT
method to solve the Poisson equation, we have used a 2D domain-decomposition among processors
to keep one global dimension local for FFT in that dimension followed by transpose and FF'T for
the other dimensions. Global communication is involved in the stage of transpose that moves the
local dimension into the global dimension.

After solution of the Poisson equation, the fields on the grid points are calculated using a finite
difference method. To calculate the fields on the boundary grid points, neighboring communica-
tion is used to obtain the potentials on the neighboring processor. Then a finite difference method
is applied on all processors to obtain the electric fields. With the self-consistent electromagnetic
fields and particles on the local computational grid, interpolation is used to obtain the field on in-
dividual particles. After obtaining the self-consistent fields on each individual particle, the particle
advancement can be done on all processors in parallel for one time step. This process is repeated
in many steps until the completion of the simulation.

In the above domain decomposition method, the communication for particle movement is di-
rectly related to the number of local macroparticles. The communication for charge density and



field exchange is related to the number of local grid points used in the simulation. Those com-
munications are among the local neighboring processors and can be done simultaneously on most
parallel computers. Global communication is used only for matrix transpose in the 3D FFT for
solving the Poisson equation.

Uniform computational mesh is used to solve the Poisson’s equation using the FFT-based
method. For a nonuniform particle density distribution, the number of particles on each processor
will not be evenly distributed among the processors if the global computational domain and the
mesh grid are uniformly decomposed onto each processor. Dynamic load balance is employed with
adjustable frequency to keep the number of macroparticles on each processor approximately equal.
This is done by adjusting the local boundary range on each processor using two one-dimensional
particle density distribution functions (one for y and one for z) in the two-dimensional domain
decomposition method [4]. However, it will work precisely only for a density distribution func-
tion which can be separated as a product of two one-dimensional functions along each direction.
Meanwhile, this will also result in different number of local grid points on each processor and load
imbalance in the solution of the Poisson equation. Global communication is needed to find the
global one-dimensional density function on all processors from the local two-dimensional density
function. Here an all-reduce and an all-gather communications are used to find the global density
function for each dimension in the two-dimensional domain decomposition method.

IV. PARALLEL PARTICLE-FIELD DECOMPOSITION IMPLEMENTATION METHOD

The domain decomposition method works well when the particles do not move too far from
their positions during each time step. This means that only neighboring processor communication
is required. However, in the particle beam dynamics simulation, after each step the particles may
move a long distance due to the action of external maps. In this case, a lot of communication
is required to move these particles to their local processors. Meanwhile, even though the domain
decomposition method can achieve a load balance of particles, the solution of the Poisson equation
is not balanced since each processor has a different number of computational grids, i.e. a different
size of subdomain.

Perfect load balance can be achieved, and particle movement avoided, by using a particle-field
decomposition method. In this method, the particles and computational domain are uniformly
distributed among processors. Each processor possesses the same number of particles and the
same number of computational grid points, i.e, the same size of spatial subdomain. Fig. 3 shows
a schematic plot of the particle-field decomposition among three processors. The global compu-
tational mesh grid is uniformly distributed among three processors. Each processor also has the
same number of particles. The spatial coordinates of the particle on a processor may not stay
inside the spatial mesh subdomain of that processor. During the stage of charge deposition, the
particles are deposited onto a computational grid to obtain the charge density distribution. For
the particles with spatial positions outside the local subdomain, an auxiliary computational grid
is used to store the charge density. After the deposition, the charge density stored on the auxiliary
grid will be sent to the processor containing that subdomain by using a global communication.
With charge density distribution local to each processor, the Poisson equation is solved in parallel
using the FFT-based Green function method. Since each processor contains the same number of
computational subdomain grid points, the work load is well balanced among all processors. After
the solution of the Poisson equation, the electric potential on the local subdomain is sent to all
processors through another global communication. With the electric potential on each processor,
the electric fields are calculated on the grid and interpolated onto individual particles. The parti-
cles are advanced using the self-consistent electromagnetic field and the external maps. Since each
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FIG. 3: A schematic plot of the particle-field decomposition method in particle-in-cell simulation.

processor contains the same number of particles and grid points, the work of this process is also
well balanced among processors. Using the particle-field decomposition results in a load balance
in both particle advancement and self-consistent field calculation.

There are three major communication steps associated with the particle-field decomposition
method. One is the all-reduce communication in the process of collecting charge density onto each
processor during charge deposition. One is the all-gather communication for matrix transpose in
the solution of the Poisson equation using the FFT-based method. One is the all-gather commu-
nication in the process of gathering the electric potential from the subdomain of each processor
to the auxiliary grid of each processor after the solution of the Poisson equation. The volume
of communication in the particle-field decomposition approach is proportional to the number of
computational grid points instead of the number of moving particles in the domain decomposition
approach. Since, in the study of beam dynamics simulations for our targeting application, the
number of particles is much larger than the number of computational grid points, e.g. 10° vs. 10,
the particle-field decomposition approach can significantly reduce the communication cost in this
type of simulation.

The particle-field decomposition method also helps the memory usage during the particle-in-
cell beam dynamics simulation. Since there is no particle movement across different number of
processors, there is no need for dynamic memory management. This avoid some potential problem
of memory leakage during the process of simulation. Since each processor has the same number
of particles and computational grids in the particle-field decomposition method, this results in a
uniform memory usage among all processors. This avoids the potential problem of insufficient
memory on a single processor due to the load imbalance in the domain-decomposition method.

V. PARALLEL PERFORMANCE STUDIES

A. Experiments Setup

The performance of the particle-field decomposition implementation method (PFD) and the
domain decomposition implementation method (DD) was measured on two main stream parallel
computers: the Cray XT4 at NERSC [19] and the IBM Blue Gene/P at ALCF [20]. We ran the



beam dynamics simulation using a section of accelerator beam line element designed for a free
electron laser (FEL) based future light source at Lawrence Berkeley National Laboratory [17].

Table I summarizes the characteristics of the two parallel machines used in our study. The
byte-to-flop ratio shows the balance of the memory bandwidth versus floating-point speed—with
larger ratio indicating higher bandwidth relative to the processor speed. The MPI latency and
bandwidth are the measured point-to-point communication speed. As can be seen, the XT4 is
about 2-3 times more powerful than the Blue Gene/P in most aspects except for the MPI message
latency, which is about the same on average for both machines. The Blue Gene/P’s lower latency
relative to the processor speed gives this machine a scaling advantage for the code requiring many
messages. This is apparently the case with the beam dynamics code, and we will show that it
scales better on the Blue Gene/P.

On both machines, we studied the following three scenarios of the input datasets:

e Weak scaling. The initial problem size is of 32 x 32 x 32 grid points with 8 million macropar-
ticles on 64 processors. The problem size is doubled with the doubled number of processors.
This is done by doubling the number of grid points and the number of macroparticles, so
the average number of macroparticles per grid point is constant, about 244.

e Strong scaling A. We fix the problem size with 32 x 32 x 2048 grid points and 1 billion
macroparticles. The average number of macroparticles per grid point is about 477.

e Strong scaling B. We fix the problem size with 128 x 128 x 128 grid points and 10 million
macroparticles. The average number of macroparticles per grid point is about 5.

In our beam dynamics simulation of the light source linear accelerator, the problem size is
usually determined by the physical requirements. Previous study suggested that sufficient number
of macroparticles should be used in order to accurately model the shot noise inside the beam [18].
In the other applications such as simulation of space-charge effects in a ring accelerator, the number
of macroparticles can be much smaller. In both cases, the strong scaling will provide more useful
information.

In addition to the total runtime, we also studied the computing time spent in the following
phases of the simulation:

e drift — particle advancement with external field,
e charge — particle charge deposition on the grid,
e Poisson — solving the Poisson equation,

e force —field calculation from potential, interpolating onto particle, and particle advancement
with self-consistent field, and

e comm — communication.

For the PFD implementation, the comm includes global communication time in matrix trans-
pose for solving the Poisson equation, in computing charge density from particles distributed among
processors, in obtaining the electric potential on all mesh grid from the local mesh grid of indi-
vidual processor. For the DD implementation, the comm includes communication time spent in
moving particles from the physical domain on one processor to the physical domain of another
processor, in global matrix transpose for solving the Poisson equation, in summing up the particle
charge density from the particles on the neighboring processor, in exchanging the electric potential
between the neighboring processor for field calculation, and in exchanging the electric field between
the neighboring processor for field interpolation.



TABLE I: Characteristics of the two parallel machines.

| Systems| Cray XT4 | IBM Blue Gene/P |
Core type AMD Opteron IBM PowerPC 450
Clock frequency 2.3 GHz 850 MHz
L1 cache|64 KB (D), 64 KB (I) 32 KB
L2 cache 1 MB 14 stream prefetching
DP Gflops 9.2 3.4
Node
# cores/node 4 4
L3 cache shared 8 MB
Memory 8 GB 2 GB
Memory bandwidth| 42.4 — 51.2 GB/s 13.6 GB/s
Byte/flop ratio 1.4 1.0
Network
Topology 3D torus 3D torus
MPT latency 6.5 — 8.5 us 3 ps one hop
10 ps to farthest
MPI bandwidth 1.6 GB/s 425 MB/s

B. Performance study on the Cray XT4

We first ran the weak scaling test for both parallel implementation schemes on the Cray XT4.
Figure 4 shows the measured computing time as a function of processor count for both the PFD
and the DD implementations.

It is seen that the total computing time with the PFD method increases faster than the DD
method. The growth of the computing time spent in communication, charge deposition, and self-
consistent force calculation is also faster in the PFD method than that in the DD method. In the
PFEFD method, during the self-consistent electric field calculation, the whole mesh grid is duplicated
among all processors for the field computation from the electric potential. When the number of grid
points is doubled with the doubled number of processors, this produces twice the computational
work on each processor, which is reflected in the increase of the force time in Figure 4. The reason
for the charge time to increase is because the entire mesh gird is used on each processor to find
the charge density on the grid. After the global all-reduce communication, only charge density
on the mesh grid belonging to the local processor is copied into that local mesh grid. As the
entire mesh size increases, this causes the growth of computing time in the charge deposition. In
contrast, the charge deposition, the self-consistent field calculation, and the particle advancement
remain fairly constant in the domain decomposition method because of the roughly constant ratio
between problem size and the number of processors in the weak scaling test. The communication in
the PFD method involves primarily global communication such as all-gather and all-reduce while
the communication in the DD method involves mostly neighborhood communication. This results
in a better scalability of the DD method than that of the PFD method. However, for the total
computing time, the PFD method is still faster than the DD method up to 2000 processors until
the communication cost becomes dominant. This is probably due to the fact that in those tests, the
number of macroparticles is dominant over the number of grid points—about 244 particles per grid
point. The fraction of time spent in communication and field calculation is relatively small when
the number of processors is below 1000 processors. The time spent on solving the Poisson equation
is similar between both methods. The somewhat difference could be due to load imbalance in the
local computational domain grid in the DD method to solve the Poisson equation versus perfect
grid balance in the PFD method.
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FIG. 4: Computing time as a function of number of processors on Cray XT4 using the particle-field decom-
position scheme (left) and the domain decomposition scheme (right) in the weak scaling test.

Next we examine the strong scaling case. Figure 5 shows the computing time as a function of
number of processors for both schemes in the strong scaling test. Again, the domain decomposition
method shows somewhat better scalability than the particle-field decomposition. Since the problem
size is fixed, all the computing time in the particle advancement under external field, charge
deposition, self-consistent field calculation and particle advancement with the field decreases with
the number of processors. The increase of the time in solving the Poisson equation is due to the
use of global communication for matrix transpose. The dominant communication cost in the DD
method goes down with the increasing number of processors. The communication cost in the PFD
method constitutes a small fraction of the total cost at the beginning 256 processors, increases
gradually, and becomes dominant after 2000 processors. However, the total computing time in the
PFD is still less than that of the DD method.

In the above application example, the ratio of the number of macroparticles to that of the grid
points is relatively high, about 477. This is needed for the beam dynamics simulation of future light
source linear accelerator. In some other applications such as simulation of space-charge effects in a
ring accelerator, this ratio can be much smaller. Figure 6 shows the computing time as a function
of number of processors for both schemes in the strong scaling test with 128 x 128 x 128 grid points
and 10 million macroparticles. This results in the ratio of macroparticles to grid points about 5.
It can be seen that the DD method is faster and also scales better than the PFD method on all
processors.

C. Performance study on the IBM Blue Gene/P

We first consider the weak scaling case, and compare the code performance between the Blue
Gene/P and the XT4. Figure 7 shows the measured runtime as a function of the number of
processors, for both the PFD and the DD schemes. Compared to Figure 4, we see that the
code ran faster on the XT4 than on the Blue Gene/P with both parallelization schemes, and
with different number of processors. This is because in absolute term, the XT4 has overall faster
processor, memory and interconnect speed. On the other hand, it is clear that both parallelization
schemes scale better on the Blue Gene/P. For example, using 64 processors, on the Blue Gene/P,
PFED is over six times as slow and DD is over four times as slow as on the XT4. While using
8192 processors, PFD becomes less than twice as slow and DD is less than three times as slow
as on the XT4. The better scaling on the Blue Gene/P is attributed to its faster interconnect
speed relative to its processor speed (e.g., lower latency). This is readily confirmed by examining
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FIG. 6: Computing time as a function of number of processors on Cray XT4 using the particle-field de-
composition scheme (left) and the domain decomposition scheme (right) in the strong scaling test B with
128 x 128 x 128 grid points and 10 million particles.

the comm phase of the code. In the PFD method, communication takes smallest amount of time
compared to the other four major phases, even with over 8,000 processors. This represents the
most dramatic difference from the Cray XT4, where communication dominates all the other phases
with larger processor count (c.f. Figure 4, left plot). In the DD method, communication is the
second dominating phase, only after the drift phase. The drift phase dominates the total time in
both the PFD and DD methods, and is much slower relative to the Cray XT4. This is the result
of the much slower processor speed of the Blue Gene/P, because this phase involves large bulk of
local computation and no communication. Comparing between the PDF and the DD schemes, we
see that in the DD scheme, the common non-scalable phase is Poisson solution, mainly because
that involves nontrivial amount of communication during matrix transpose. Whereas in the PDF
scheme, two other phases are also not very scalable, which are force and charge. This trend is
similar to what was observed on the Cray XT4 (c.f. Figure 4, left plot), and the same reason holds,
that is, replicating the mesh points among all the processors introduces extra amount of work per
processor when increasing the mesh size (and the processor count).

Next we consider the strong scaling case. Figure 8 shows the measured runtime as a function
of the number of processors with the fixed problem size, for both the PFD and DD schemes. In
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field decomposition scheme (left) and the domain decomposition scheme (right) in the weak scaling test.

the DD scheme, we have observed severe load imbalance of the macroparticle distribution because
the particles move between different domains (and hence processors). This causes some processors
to have many more particles than the others at certain simulation steps, and need much more
memory; that is why the DD code ran out of memory when using less than 1024 processors.

In terms of the total time, the PFD scheme is much faster in the beginning (1902.4 seconds for
PFD vs. 3076.2 seconds for DD at 1024 processor count), but gradually loses the speed relative
to the DD method—at the 16K processor count, the DD scheme is almost as fast as the PFD
scheme, 584.0 and 540.3 seconds, respectively. Similar to the weak scaling result, the comm time
is the smallest in the PFD method. But in the DD method, the comm time is almost the same
as the drift time, and these two phases take the majority of the total time. As more and more
processors are employed, the drift time becomes more and more dominant, which may be due to
load imbalance in this phase as reflected in the memory usage shown in the following section.

We also carried out strong scaling performance study on the IBM Blue Gene/P for the two
parallel implementation schemes using a smaller ratio of macroparticles to grid points as we did
on Cray XT computer. Figure 9 shows the computing time as a function of number of processors
for both schemes in the strong scaling test B with 128 x 128 x 128 grid points and 10 million
macroparticles. It is seen that in this case, the DD method scales better than the PFD method
and also with a faster computing speed.

D. Memory Usage

Besides computing time, we also measured the memory usage in the strong scaling test for
both the PDF and the DD methods. This was done on the Cray XT4 at NERSC, using the IPM
performance tool [21]. Figure 10 shows the average, the minimum, and the maximum memory
usage among all the processors.

It is seen that for processor count up to 2000, the memory usage by the particle-field decom-
position is smaller than that by the domain decomposition. This discrepancy is especially large
on relatively small number of processor such as the 512 processor case. This is due to severe load
imbalance in the domain decomposition method, which precludes the use of such a method on
256 processors because the maximum memory usage on a single processor exceeds the 2 Gbytes
memory limit. With the increase of processor numbers, the average usage of the memory becomes
smaller. Even though there still exists a noticeable load imbalance, the maximum memory usage
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FIG. 9: Computing time as a function of number of processors on the IBM Blue Gene/P using the particle-
field decomposition scheme (left) and the domain decomposition scheme (right) in the strong scaling test B
with 128 x 128 x 128 grid points and 10 million particles.

is far below the limit. While the memory usage by the particle-field decomposition method is well
balanced among all processors, the average memory usage does not decrease as fast as the domain
decomposition method. This is due to the duplication of the whole mesh grid among all processors,
which will not go down as the increase of processor number.

VI. HIGH RESOLUTION BEAM DYNAMICS SIMULATION FOR FUTURE LIGHT
SOURCE LINAC

From the above performance analysis we see that the particle-field decomposition works more
effectively on a medium number of processors when the number of macroparticles is dominant in
the simulation. In the beam dynamics simulation for future light source linac application, the
number of macroparticles needs to be close to the real number of electrons in a bunch of electron
beam. For a typical application, this number is on the order of one billion. In this section, we
carried out a high resolution three-dimensional beam dynamics simulation based on the particle-
field decomposition method for a linear accelerator that is designed as a beam delivery system for
a next generation free electron laser (FEL) based light source. This accelerator consists of a laser
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FIG. 10: The average memory usage, the minimum memory usage on a processor, the maximum memory
usage on a processor using the particle-field decomposition (left) and the domain decomposition method
(right).

heater, two superconducting RF accelerating linac sections, a longitudinal phase space linearizer, a
bunch compressor (BC), and an electron beam switch yard (spreader). The energy of the electron
beam at the entrance to linac is about 40 MeV. The initial peak current is about 70 A with a
total charge of 0.8 nC. The initial transverse rms beam size is 0.42 mm with a normalized rms
emittance of 0.75 mm-mrad. The electron beam is accelerated to 260 MeV at the end of the first
linac (L1) with an energy gain of 13.5 MeV/m within the accelerator cavities. It is followed by
the harmonic linearizer (HL) which is the second superconducting linac producing a maximum
accelerating gradient of 5 MeV/m at 3.9 GHz. The HL decelerates the electron beam slightly while
(together with L1) linearizing the energy chirp of the bunch in front of the bunch compressor (BC).
The BC compresses the electron bunches and increases the electron peak current up to about 1
kA. After the bunch compressor, the electron beam is accelerated from about 250 MeV to a final
energy of 2.4 GeV before entering a beam switch yard, i.e. a spreader. The spreader includes 10
branch beam line lattices. Each lattice has two parts, the beam take-off section and the FEL fan
distribution section. Each part is built as a triplet bend achromat. Here, a kicker, a septum and
off-set quadrupoles are used together in place of one bending magnet in the beam take-off section.
A more detailed description of this accelerator design can be found in [17].

Figure 11 shows the transverse root-mean-square (rms) beam size and rms emittance evolving
through the accelerator. This simulation was done using 1024 cores on the Cray XT4 computer
at the NERSC. It took about one and a half hour to complete the simulation. In an accelerator,
the transverse beam size has to be controlled within the aperture of vacuum chamber to avoid
any potential damage to the accelerator element from particle losses. The transverse emittance as
a measure of electron beam quality needs to be kept as low as possible in order to improve the
efficiency of producing light source radiation. It is seen that from Figure 11 there is some noticeable
growth of the emittance through the accelerator driven by the self-consistent space-charge effects.
This growth of the emittance will be minimized in the next-around design. Figure 12 shows the
beam phase space distribution in z —x plane and in z — del E/ E plane at the end of the accelerator.
There exists a longitudinal-transverse correlation in the z — x plane due to the coherent radiation
effects when the beam pass through the bunch compressor in the accelerator. In the longitudinal
z — del E/E plane, small ripple can be observed in the distribution. This ripple comes from the
microbunching instability driven by the space-charge effects, structure wake fields and coherent
synchrotron radiation inside the accelerator. A large number of macroparticles are needed in order
to accurately model the mircobunching instability.
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VII. SUMMARY

In this paper, we presented a detailed analysis of the domain decomposition and the particle-field
decomposition implementation schemes for parallel particle-in-cell simulation in accelerator beam
dynamics study. The parallel performance of the two implementation methods was studied on
two main stream parallel architectures, Cray XT and IBM Blue-Gene. The domain decomposition
method shows better scalability on large number of processors on both computers due to the
fact that local neighboring communication is used in this method. However, for a macroparticle
dominant application, it is still slower than the particle-field decomposition method up to a few
thousand processors. Moreover, the strong load imbalance in the domain decomposition method
requires the usage of more memory, which precludes the running of the beam dynamics simulation
on some small number of processors. For our target application of beam dynamics simulation of
linear accelerator for future light source, a large number of macroparticles are needed in order to
accurately model the shot noise of electron beam. In this case, the particle-field decomposition is
more appropriate. For other applications such as study of space-charge effects in ring accelerator,
when the ratio of macroparticle to grid point is smaller, the domain-decomposition method becomes
more appropriate.
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