Proceedings of NASA Computational Sciences Workshop, Moffett Field, CA, August 13-15, 1996.

Parallel Mesh Adaption with Global Load Balancing on the SP2

Rupak Biswas Leonid Oliker Andrew Sohn
MRJ, Inc., NASA ARC RIACS, NASA ARC CIS Dept., NJIT
Moftett Field, CA 94035 Moftett Field, CA 94035 Newark, NJ 07102

(415) 604-4411 (415) 604-4316 (201) 596-2315
rbiswas@nas.nasa.gov oliker@riacs.edu sohn@cis.njit.edu

Introduction

Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady
three-dimensional problems that require grid modifications to efficiently resolve solution fea-
tures. By locally refining and coarsening the mesh to capture flowfield phenomena of interest,
such procedures make standard computational methods more cost effective. Unfortunately,
the adaptive solution of unsteady problems causes load imbalance among processors on a
parallel machine because the computational intensity is both space and time dependent.
This requires significant communication at runtime leading to idle processors and adversely
affecting the total execution time. Various methods on dynamic load balancing have been
reported to date; however, most of them lack a global view of loads across processors.

Figure 1 depicts our framework for parallel adaptive flow computation. The mesh is first
partitioned and mapped among the available processors. A flow solver then runs for several
iterations, updating solution variables. Once an acceptable solution is obtained, a mesh
adaption procedure is invoked to generate a new computational mesh based on an error
indicator. A quick evaluation step determines if the new mesh is sufficiently unbalanced
to warrant a repartitioning. If the current partitions are adequately load balanced, control
is passed back to the flow solver. Otherwise, a repartitioning procedure divides the new
mesh into subgrids. The new partitions are then reassigned to the processors in a way that
minimizes the cost of data movement. If the remapping cost is less than the computational
gain that would be achieved with balanced partitions, all necessary data is appropriately
redistributed. Otherwise, the new partitioning is discarded and the flow calculation continues
on the old partitions. Notice from the framework in Fig. 1 that the computational load is
balanced and the runtime communication reduced only for the flow solver but not for the
mesh adaptor. This is acceptable since flow solvers are usually several times more expensive.

This paper briefly describes an efficient parallel implementation of the 3D_TAG tetrahedral
mesh adaption scheme that has shown good sequential performance on the C90 when coupled
with a variety of unstructured flow solvers to solve realistic problems in rotary- and fixed-
wing aerodynamics [1,5]. The parallel version [3] consists of an additional 3000 lines of C++
with MPI, allowing portability to any platform supporting these languages. This code is a
wrapper around the original adaption program written in C, and requires almost no changes
to the serial version. Only a few lines were added to link it with the parallel constructs. An
object-oriented approach allowed this to be performed in a clean and efficient manner.

This paper also describes a new method that has been developed to dynamically balance the
processor workloads with a global view [4]. The load-balancing procedure uses a dual graph
representation of the initial mesh to keep the complexity and connectivity constant during
the course of an adaptive computation. It uses heuristic but accurate metrics to estimate



the computational gain and the redistribution cost of having a balanced workload after each
mesh adaption. Although mesh repartitioning is an inherent component of our global load
balancing scheme, it is not addressed here. Partitioning results for small model problems in
the context of dynamic load balancing are reported in [4].

Parallel Mesh Adaption

Complete details of the 3D_TAG mesh adaption scheme are given in [1]. At each adaption
step, tetrahedral elements are targeted for coarsening, refinement, or no change by computing
an error indicator for each edge. Edges whose error values exceed an upper threshold are
targeted for subdivision. Similarly, edges whose error values lie below another lower threshold
are targeted for removal. Only three subdivision types are allowed for each element. The
1-to-8 isotropic subdivision is implemented by adding a new vertex at the mid-point of each
of the six edges. The 1-to-4 and 1-to-2 subdivisions result either because a tetrahedron is
targeted anisotropically or because they are required to form a valid connectivity for the new
mesh. Pertinent information is maintained for the vertices, elements, edges, and external
boundary faces of the mesh. In addition, each vertex has a list of all the edges that are
incident upon it. Similarly, each edge has a list of all the elements that share it. These lists
eliminate extensive searches and are crucial to the efficiency of the overall adaption scheme.

Mesh refinement is performed by first setting a bit flag to one for each edge that is targeted
for subdivision. The edge markings for each element are then combined to form a 6-bit
binary pattern. Elements are continuously upgraded to valid patterns corresponding to the
three allowed subdivision types until none of the patterns show any change. Each element is
independently subdivided based on its binary pattern. Mesh coarsening also uses the edge-
marking patterns. If a child element has any edge marked for coarsening, this element and its
siblings are removed and their parent element is reinstated. The parent edges and elements
are retained at each refinement step so they do not have to be reconstructed. Reinstated
parent elements have their edge-marking patterns adjusted to reflect that some edges have
been coarsened. The mesh refinement procedure is then invoked to generate a valid mesh.

The parallel implementation of the adaption code consists of three phases: initialization,
execution, and finalization. The initialization and finalization steps are executed only once
for each problem outside the main solution«sadaption cycle shown in Fig. 1. The execution
step runs a local copy of 3D_TAG on each processor. Good parallel performance is therefore
critical during this phase since it is executed several times during a flow computation.

The initialization phase takes as input the global initial grid and the corresponding partition
information that places each tetrahedral element in exactly one partition. It then distributes
the global data across the processors, defining a local number for each mesh object, and
creating the mapping for objects that are shared by multiple processors. Shared vertices and
edges are identified by searching for elements that lie on partition boundaries. A bit flag is
set to distinguish between shared and internal objects. A list of shared processors (SPL) is
also generated for each shared object. The additional storage that is required for the parallel
code depends on the number of processors used and the fraction of shared objects. For the
cases in this paper, this was less than 10% of the memory requirements of the serial version.

The execution phase runs a copy of 3D_TAG on each processor that adapts its local region,
while maintaining a globally-consistent grid along partition boundaries. The first step is



to target edges for refinement or coarsening based on an error indicator computed from
the flow solution. This process results in a symmetrical marking of all shared edges across
partitions because shared edges have the same flow and geometry information regardless
of their processor number. However, elements have to be continuously upgraded to one of
the three allowed subdivision patterns. This causes some propagation of edges targeted for
refinement that could mark local copies of shared edges inconsistently. This is because the
local geometry and marking patterns affect the nature of the propagation. Communication is
therefore required after each iteration of the propagation process. Every processor sends a list
of all the newly-marked local copies of shared edges to all the other processors in their SPLs.
The process may continue for several iterations, and edge markings could propagate back
and forth across partitions. Once all edge markings are complete, each processor executes
the mesh adaption code without the need for further communication, since all edges are
consistently marked. The only task remaining is to update the shared edge and vertex
information as the mesh is adapted. This is handled as a post-processing phase.

New edges and vertices that are created on partition boundaries during refinement are as-
signed shared processor information. If a shared edge is bisected, its two children and the
center vertex inherit its SPL. However, if a new edge is created that lies across an element
face, communication is sometimes required to determine whether it is shared or internal. If
it is shared, the SPL must be formed.

The coarsening phase purges the data structures of all edges that are removed, as well as their
associated vertices, elements, and boundary faces. No new shared information is generated
since no mesh objects are created during this step. However, objects are renumbered due
to compaction and all internal and shared data are updated accordingly. The refinement
routine is then invoked to generate a valid mesh from the vertices left after the coarsening.

It is sometimes necessary to create a single global mesh after one or more adaption steps.
Some post processing tasks, such as visualization, need to processes the whole grid simul-
taneously. Storing a snapshot of a grid for future restarts could also require a global view.
The finalization phase accomplishes this task by connecting individual subgrids into one
global mesh. Each local object is first assigned a unique global number. All processors then
update their local data structures accordingly. Finally, a gather operation is performed by
a host processor to concatenate the local data structures into a global mesh. The host can
then interface the mesh directly to the appropriate post-processing module without having
to perform any serial computation.

Global Load Balancing

The dual graph representation of the initial computational mesh is one of the key features
of this work. Each dual graph vertex has two weights associated with it. The computational
weight, weomp, indicates the workload for the corresponding element. The remapping weight,
Wremap, 11dicates the cost of moving the element from one processor to another. The weight
Weomp 18 set to the number of leaf elements in the refinement tree because only those elements
that have no children participate in the flow computation. The weight wyemap, however, is
set to the total number of elements in the refinement tree because all descendants of the root
element must move with it from one partition to another if so required.

The most significant advantage of using the dual of the initial computational mesh is that



its complexity and connectivity remains unchanged during the course of an adaptive com-
putation. The partitioning and load-balancing times therefore depend only on the initial
problem size and the number of partitions. New grids obtained by adaption are translated
to the two weights, Weomp and Wremap, for every element in the initial mesh.

The preliminary evaluation step rapidly determines if the dual graph with a new set of weomp
should be repartitioned. If projecting the new values on the current partitions indicates that
they are adequately load balanced, there is no need to repartition the mesh. In that case, the
flow computation continues uninterrupted on the current partitions. If, on the other hand,
the loads are unbalanced, the mesh is repartitioned. Any mesh partitioning algorithm can
be used here, as long as it quickly delivers partitions that are reasonably balanced.

Once new partitions are obtained, they must be mapped to the processors such that the
redistribution cost is minimized. We assume that the redistribution cost is proportional to
the volume of data moved. The first step toward processor reassignment is to compute a
similarity measure .S that indicates how the remapping weights wyemap of the new partitions
are distributed over the processors. It is represented as a matrix where entry 5;; is the sum
of the Wremap of all the dual graph vertices that are common between processor ¢ and new
partition j. To minimize the total data movement for all processors, each processor ¢ must be
assigned to an unique partition j; so that the objective function F = 2 | S;:. is maximized
subject to the constraint j; # j,,, Vi # m. Both an optimal and a heuristic greedy algorithm
have been implemented for solving this problem. A similarity matrix with the new processor
assignment for 8 partitions is shown in Fig. 2. Only the non-zero entries are shown.

The computational gain due to repartitioning is proportional to the decrease in the load
imbalance achieved by running the adapted mesh on the new partitions rather than on the
old partitions. The redistribution cost is calculated from the similarity matrix S using two
machine-dependent parameters: the remote-memory latency time 7j,; and the message setup
time Tyetup- The new partitioning and mapping are accepted if the computational gain is
larger than the redistribution cost.

The remapping phase is responsible for physically moving the data when it is reassigned to a
different processor. When an element is moved to a different processor, two kinds of overhead
are incurred: communication and computation. The communication overhead includes the
cost of packing and unpacking the send and receive buffers, as well as the message setup
time and the remote-memory latency time. The computation cost is the time necessary to
rebuild the internal and shared data structures in a consistent manner.

Results

The parallel 3D_TAG and global load balancing procedures have been implemented on the
SP2 located at NASA Ames Research Center. Both codes are written in C and C++, with
the parallel activities in MPI for portability. The computational mesh, containing 60,968
tetrahedral elements and 78,343 edges, is one used to simulate an acoustics experiment where
a 1/Tth scale model of a UH-1H helicopter rotor blade was tested over a range of subsonic
and transonic hover-tip Mach numbers. Numerical results and a detailed report of the
simulation are given in [5]. Results are presented for one adaption step using two different
edge-marking strategies. The first strategy, called Random, consisted of randomly targeting
35% of the edges for refinement. The second strategy, called Local, refined the same number



of edges in a single compact region of the mesh. Both adaption strategies resulted in a final
mesh consisting of more than 201,000 elements and 246,000 edges.

Figure 3 shows the parallel speedup of the refinement phase. As expected, Random gives
the best performance of 47.0X on 64 processors as the workloads are inherently balanced.
Performance deteriorates to 21.8X for the Local strategy. This is because almost all the
mesh adaption is confined to a small subset of the processors. This problem can be remedied
by repartitioning the mesh immediately after targeting edges for refinement but before the
actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

Figure 4 shows how the execution time is spent during the refinement and the subsequent
load-balancing phases for the Local strategy. The repartitioning times are not shown as it is
not the focus of this paper. Note that the remapping time initially increases with the number
of processors, but then gradually decreases. This is because even though the total volume of
data movement increases with the number of processors, there are actually more processors to
share the work. This indicates that our global load balancing strategy will remain viable on
large numbers of processors as the remapping phase will not become a bottleneck. Processors
were reassigned using our heuristic algorithm. Although the processor reassignment time
increases with the number of processors used, it remains negligible compared to the adaption
and remapping times even for 64 processors.

Figure 5 compares the execution times and the amount of data movement for the Local
strategy when using the optimal and heuristic processor assignment algorithms. The optimal
method requires almost two orders of magnitude more time than our heuristic method. The
relative reduction in data movement, however, is not very significant for our test cases.

Figure 6 illustrates the impact of load balancing on the execution time of the flow solver.
Note that the maximum possible improvement is not linear. For the 3D_TAG code, load
balancing for P processors could give a maximum improvement of If—f? over a non-balanced
load [2]. The Random case gives only a marginal improvement when the processor loads
are balanced because the computational work is already distributed uniformly among the
processors after mesh adaption. The Local strategy shows a much bigger improvement with
load balancing because a small compact region of the mesh was refined that led to a severe
imbalance among the processors. With 64 processors, the improvement is almost sixfold. It
is important to note that the results in Fig. 6 are for a single refinement step. With repeated
adaption, the gains realized with load balancing may be even more significant.

References

[1] R. Biswas and R.C. Strawn, “A New Procedure for Dynamic Adaption of Three-Dimen-
sional Unstructured Grids,” Appl. Numer. Math., 13 (1994) 437-452.

[2] R. Biswas, L. Oliker, and A. Sohn, “Global Load Balancing with Parallel Mesh Adaption
on Distributed-Memory Systems,” Supercomputing’96, to appear.

[3] L. Oliker, R. Biswas, and R.C. Strawn, “Parallel Implementation of an Adaptive Scheme
for 3D Unstructured Grids on the SP2,” [rregular’96, to appear.

[4] A. Sohn, R. Biswas, and H. Simon, “Impact of Load Balancing on Unstructured Adaptive
Grid Computations for Distributed-Memory Multiprocessors,” SPDP’96, to appear.

[5] R.C. Strawn, R. Biswas, and M. Garceau, “Unstructured Adaptive Mesh Computations
of Rotorcraft High-Speed Impulsive Noise,” J. of Aircraft, 32 (1995) 754-760.



Initial Mesh

Partitioning

Flow solution

Remapping

Balanced Mesh

New Partitions

Old Processors

New Processors

Figure 1: Overview of our framework for par- Figure 2: A similarity matrix after processor

allel adaptive flow computations.
50
-8~ Random f
- Loca '

407 - Local with repartitioning

O <’_ T T T T T T T
0 8 16 24 32 40 48 56 64

Number of processors

reassignment.
2
10
1]
= a
>
-1]
£ 107
c 1 N
S -2
= 10 1
g -3 .
5 104 —-o— Adaption
-4 - Reassignment
10 1 -8 Remapping
5]

g g8 16 24 32 40 48 56 64
Number of processors

Figure 3: Speedup of the parallel mesh adap- Figure 4: Anatomy of total execution time

tion code during the refinement stage. for the Local refinement strategy.
2
7 107
5 o °o B
g 10 B S
£ 4 463 &
g0 4T 2 3
] Q
£ 104 .2 5
& 10 1 4 =
= ] S = 8
1(53E —-o— Execution time (H) 2 ¢
) ] -o- Executiontime (O) |, 3
x -4]

- Datavolume (H)
-2- Datavolume (O)

5
100 § 16 24 %2 40 48 56 64
Number of processors
Figure 5: Comparison of the heuristic (H) and

optimal (O) mappers for the Local strategy.

8 16 24 32 40 48 56 64

Number of processors
Figure 6: Comparison of flow solver execu-
tion times with and without load balancing.



