.  The popular method for addressing these deficiencies is through the use of large multi-level caches, which attempt to increase performance by leveraging temporal and spatial locality characteristics of the application.  However, since many scientific applications lack such localities, cache technologies can deleteriously affect performance while occupying a significant fraction of the available chip real estate and increasing power consumption.  Another approach for obtaining high-performance on conventional systems is through the use of superscalar microprocessors that attempt to dynamically extract instruction level parallelism from the user code.   This methodology can have limited performance benefits if the underlying application is not expressed in a manner amenable to fine-grained low-level parallelism. In addition, these techniques increase design complexity and power consumption.

Motivation:  (2) technology drivers – consumer-level systems drive technology due to their large volume and high-profit margin (then scientific and engineering). Media processing such as video processing, speech rec, and 3D graphics will soon dominate the processing cycles in computer-based systems [reference 11 of christofois thesis].  We at the scienfic computing end of the spectrum need to check out whats going on and leverage that technology where possible and influence it to make changes to help benefit scienfic dudes.

(1) Failure of cache based systems (see crago – pim-based multiproc paper) .  Moore law, gap…

(3) Mani class paper -> histrorically embedded multimedia processors have been handled by custom-designed ASIC’s, but high cost of relatively slow design cycles of custom ASIC design is a problem…. See manis paper…

say something about floorplan and power consumption: If current trends are not reversed then the physical size of supercomputers and their power consumption are going to be limiting factors in procurements.  The cost of constructing or leasing sufficient machine room space and the ongoing operational costs of powering and cooling future supercomputers cannot be ignored.

The tight integration of logic and memory in PIM-based architectures can significantly reduce power and cooling requirements and allow for higher spatial densities.   (ldrd?)

Since execution units are relatively cheap, duplicating them is a very attractive idea. However the question is how to feed them from the memory units, we explore two technologies, vector processing (takes vectors as input operands and performs the same primitive operation on each element of the vector) and stream processing similar to vector processor, but can perform complex operations (or subroutine) on the vectors (now called streams).  

Vector and stream processor do the job well when there’s enough parallelism to exploit, because data parallel instructions have no dependencies almost by definition, it obviates the need for complex control hardware require to detect and prevent data dependent instructions from violating program behavior.  It is noted that its suitable for certain programs. 

Imagine Issues:

Negatives:

If a record is needed multiple times during the course of a kernel (example neighboring elements in an unstructured grid computation), it needs to be read from memory repetedly, wasting memory bandwidth (imagine has a difficult time extracting performance for kernels that keep a large number of persistent intermediate values)

A record which is read multiple times in one of more index loads will be replicated in the SRF

The overhead of point chasing using index streams will increase as the depth of the pointer chain increases – for each level an index load from mem to srf is required

For applications where records have variable sizes, the lock-step execution of the SIMD architecture is limited by the longest record (or the longest required record comp).

In unstructured mesh computation: irregular record size due to varying number of neighbors per node.  Also node  visited several times in the course of computation by its neighbors, therefore requiring multiple reads from main memory

Scientific codes often exhibit a large degree of data parallelism and may be good candidates for SIMD streaming applications.  Although does not work well with frequent data reuses nad irregular data access

Intercluster communication may serialize the computation rate

Performance characterization:

Break down time into:  Loading streams into SRF, loading micro-code, and kernel execution (micro-code loading overhead only significant for short streams and/or computationally non-intensive kernels)

Attributes of Stream programs (multimedia)

High computation rate, high comp to mem ratio,  producer-consumer locality with little global data reuse, Parallelism instruction (many ops concurrently for each data element), data (multiple data records processed concurrently), task level (multiple streams can be pipelined or work can be divided across several stream processors). Can be applied to applications with complex control and irregular data access patterns.

Stream programming model (spm):  the data primitive is a stream: an ordered set of data of an arbitrary (but homogenous) data-type.  Operations in the spm are expressed as ops on entire streams ex.  Load/store from mem, stream transfers over mult-node network, computational kernels

Kernels perform computation on entire streams, by applying a function to each element in the stream in order.    Take one or more streams as input and generate one or more streams as output..  Kernels cannot make general memory references, and are limited to the LRF and intercluster comm. Kernels operate only on local data.  Advantage speed cause kernel data always close to functional units, but limited application space. .  Kernel microcode stored in microcontroller

Streams can be constructed from other streams through append, truncate or extract operations.  A stream’s elements can also index into another stream

Peak 20 GOPS 32-bit floating point.

Overlaps stream operations – exploits latency tolerance

Two levels of programming model level – streaming and kernels.  Streams control data flow, kernels control computation

3 level mem hierarchy:  main mem for large 2.1GB/s, infrequently accessed data 25.6 GB/s, intermediate level for capturing on-chip locality of data (working set) 435GB/s, local level for temporary use during computation.

SRF – 128KB.  SRF connected to 8-SIMD-controlled VLIW arithmetic clusters controlled by a single microcontroller, a mem-system interface to off-chip DRAM, and NI to connect to other nodes of a multi-Imagine system.  All modules are controlled by an on-chip stream controller under the direction of an external host processor.SDRAM clock 133 MHz

Stream-load stores occur between mem system and SRF, network sends/receive occur between  NI and SRF.  Only contiguous blocks of Mem is the SRF

8clusters fed by local reg file (distributed).  The stream level is handled by a stream scheduler and the kernel is handled by a kernel scheduler.

Ideal processing long streams of independent data elements (same functional applied to each element in stream, no element is dependent on another element).  

Conditional input:  only fetch next elem in data stream if some local cond is true,

Conditional output: onlt append data to output steam if local condition relating to the data elem is true. Allows streams to be processed efficiently on the same data type.  Allows merging of streams.  Allows limited load balancing, when an additional element can be read in while other clusters are processing others (so long as computation allows this patterns of processing).  Can reorder the data, requiring an additional pass (kernel) to restore the correct order

Stripmining necessary – so data can fit in SRF.  (data processed in batces).  Ideal: long enough for kernels to achieve high efficiency, short enough to capture SRF consumer-producer locality (without spilling to memory)

Short streams bad for kenerls cause:  kernels have prologue and epilogue blocks of code that are run once per kernel exec, software-pipelining is critical for achiving high rates on kenerls – but short streams don’t amortize the software-pipelining overhead

Stream scheduler coordinates both the execution of the kernels and the movement of streams in order to minimze program execution time.  Stream scheduler addresses 3 issues: allocation of SRF, exploint c-p locality to avoid off-chip bandwidth, (3) maximize concurrency

Double buffering:  if stream is too large to fit in SRF: while kernel is reading stream from SRF, next part of stream is being loaded into the SRF.  Once kernel finished, it can start reading part 2, while part 3 is coming in from main mem. (streams are atomic – if it is being written into SRF, it cannot be read from until finished)

Software pipelining (both in kernel and stream)

Strip-mining is not automatic, cause kernels have states that are required by streams and cannot be arbitrarility subdivided. Scheduler suggests to programmer ideal SRF usage and the programmer can manually 

Imagine arch realizes thaht there is typically low reuse of data (temporal locality) in typical media applications – large data sets w/ high demand on memory bandwidth.  Proposes a hierarchy where the bdwith is served from where its least expensive, while the expensive external memory access is minimized

SRF – similar to cache, difference is it can read many words in same cycle, since the data access is guaranteed to be sequential.  When a stram is read from main mem, only useful data is read and in a particular order so SRF is not wasted for unuseful fetches.

-

Vector issues:

Cross pipe/lane communication 

Cannot take advantage of consumer-producer locality

Conditionals:  Is iram performance based on VL-time (vector-length - same as unconditional statements) or is it Density time?

Chip has virtual processor width (vpw) register, which sets the size of data types that are operated on.  6,4 GB/second (or 32 bytes/cycle).  The number of vector lanes doubles as the data size halves, with 4 vector lanes for 64 bit data, etc…  Each lane contains 2 floating point units (ine 1 can do 64-bit floating point).  Single 8 KB register file with 32 registers is partitioned across the lanes.  MIPS proc issues single instruction at a time to vector unit, and lanes work together to execute same instruction in SIMD mode.  VIRAM uses delayed pipeline model to carefully match the speed of the memory system.

32 Byte data path between processing units and DRAM, the DRAM is partitioned into two wings each with 4 banks.

32 general-purpose registers each holding up to 32 64-bit elemtns 

All vector functional units have multiple parallel data paths to process multiple vector elements per cycle.  2 int and 1 Fp unit -> peak 1.6/3.2/6.4 gops for 64/32/16-bit data and 1.6Gflop on 32 bit floting point data

Strided access: only 4 address generators (factor of 2 for 32-bit) and increased probability of  dram conflicts 

Vector processors have been expensivem largely because it for a performance driven niche market, and because of exotic packaging designed for supplying high bandwidth frfom the memory to the proc.  

Vectorizing compilers well researched.

