
David H. Bailey and Robert F. Lucas, Editors

Performance Tuning of
Scientific Applications

2

List of Figures

2.1 High-level architectural model showing two black-boxed pro-
cessors either connected to separate memories or to a common
shared memory. The arrows denote the ISA’s ability to access
information and not necessarily hardware connectivity. 13

2.2 Arithmetic Intensities for three common HPC kernels 14
2.3 Roofline Model for an Opteron SMP. Also, performance bounds

are calculated for three non-descript kernels. 16
2.4 NUMA ceiling resulting from improper data layout. The code

shown is initialization-only. It is not the possible computational
kernels. 17

2.5 Performance ceilings as a result of insufficient instruction-level
parallelism. (a) a code snippet in which the loop is unrolled.
note, (FP add) ILP remains constant. (b) code snippet in which
partial sums are computed. ILP increases with unrolling. . . . 21

2.6 Example of Ceilings associated with data-level parallelism. . . 23
2.7 Equivalence of Roofline models 24
2.8 Performance interplay between Arithmetic Intensity and the

Roofline for two different problem sizes for the same nonde-
script kernel. 25

2.9 Refinement of the previous simple bandwidth-processor model
to incorporate caches or local stores. Remember, arrows denote
the ability to access information and not necessarily hardware
connectivity. 28

5.1 Visualization of the data structures associated with the heat
equation stencil. (a) the 3D temperature grid. (b) the stencil
operator performed at each point in the grid. (c) pseudocode
for stencil operator. 37

5.2 Visualization of the datastructures associated with LBMHD.
(a) the 3D macroscopic grid. (b) the D3Q27 momentum scalar
velocities. (c) D3Q15 magnetic vector velocities. (d) C structure
of arrays datastructure. Note, each pointer refers to a N3 grid,
and X is the unit stride dimension. 39

i

ii

5.3 Sparse Matrix Vector Multiplication (SpMV). (a) visualization
of the algebra: y ← Ax, where A is a sparse matrix. (b) Stan-
dard compressed sparse row (CSR) representation of the ma-
trix. This structure of arrays implementation is favored on most
architectures. (c) The standard implementation of SpMV for a
matrix stored in CSR. The outer loop is trivially parallelized
without any data dependencies. 40

5.4 Benchmark matrices used as inputs to our auto-tuned SpMV
library framework. 41

5.5 Generic visualization of the auto-tuning flow. 48
5.6 Using a pointer-to-function table to accelerate auto-tuning

search. 49
5.7 Benefits of auto-tuning the 7-point Laplacian Stencil. 51
5.8 Benefits of auto-tuning the lattice Boltzmann Magnetohydro-

dynamics (LBMHD) application. 52
5.9 Auto-tuning Sparse Matrix-Vector Multiplication. Note, hori-

zontal axis is the matrix (problem) and multicore scalability is
not shown. 53

List of Tables

5.1 Architectural summary of evaluated platforms. 35
5.2 Interplay between the bottleneck each optimization addresses

(parallelism, memory traffic, memory bandwidth, in-core per-
formance) and the impact on implementation (code-only, data
structures, styles of parallelism). Obviously, changing data
or parallelism structure will mandate some code changes.
†Efficient SIMD requires data structures be aligned to 128-byte
boundaries. 47

iii

iv

Contents

I Introduction 3

II Modern Computer Architectures and Perfor-
mance 5

III Performance Measurement and Benchmarking 7

IV Performance Modeling 9

2 The Roofline Model 11
Samuel W. Williams
2.1 Introduction . 12

2.1.1 Abstract Architecture Model 12
2.1.2 Communication, Computation, and Locality 13
2.1.3 Arithmetic Intensity 13
2.1.4 Examples of Arithmetic Intensity 14

2.2 The Roofline . 15
2.3 Bandwidth Ceilings . 17

2.3.1 NUMA . 18
2.3.2 Prefetching, DMA, and Little’s Law 18
2.3.3 TLB issues . 19
2.3.4 Strided Access Patterns 19

2.4 In-Core Ceilings . 20
2.4.1 Instruction-Level Parallelism 20
2.4.2 Functional Unit Heterogeneity 21
2.4.3 Data-Level Parallelism 22
2.4.4 Hardware Multithreading 22
2.4.5 Multicore Parallelism 23
2.4.6 Combining Ceilings . 24

2.5 Arithmetic Intensity Walls 24
2.5.1 Compulsory Miss traffic 25
2.5.2 Capacity Miss traffic 26
2.5.3 Write Allocation Traffic 26
2.5.4 Conflict Miss Traffic 26
2.5.5 Minimum Memory Quanta 27
2.5.6 Elimination of Superfluous Floating-point Operations 27

v

vi

2.6 Alternate Roofline Models 28
2.6.1 Hierarchically Architectural Model 28
2.6.2 Hierarchically Roofline Models 29

2.7 Summary . 29
2.8 Acknowledgements . 29
2.9 Glossary . 30

V Automatic Performance Tuning 31

5 Auto-tuning Memory-Intensive Kernels for Multicore 33
Samuel W. Williams, Kaushik Datta, Leonid Oliker, and more au-

thors???
5.1 Introduction . 34
5.2 Experimental Setup . 35

5.2.1 AMD Opteron 2356 (Barcelona) 36
5.2.2 Xeon E5345 (Clovertown) 36
5.2.3 IBM Blue Gene/P (Compute Node) 36

5.3 Computational Kernels . 37
5.3.1 Laplacian Differential Operator (Stencil) 37
5.3.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD) 38
5.3.3 Sparse Matrix-Vector Multiplication (SpMV) 39

5.4 Optimizing Performance . 42
5.4.1 Parallelism . 42
5.4.2 Minimizing Memory Traffic 43
5.4.3 Maximizing Memory Bandwidth 45
5.4.4 Maximizing In-core Performance 46
5.4.5 Interplay between Benefit and Implementation 46

5.5 Automatic Performance Tuning 46
5.5.1 Code Generation . 48
5.5.2 Auto-tuning Benchmark 48
5.5.3 Search Strategies . 49

5.6 Results . 50
5.6.1 Laplacian Stencil . 50
5.6.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD) 52
5.6.3 Sparse Matrix-Vector Multiplication (SpMV) 53

5.7 Summary . 54
5.8 Acknowledgments . 54

Bibliography 55

2

Part I

Introduction

3

Part II

Modern Computer
Architectures and

Performance

5

Part III

Performance Measurement
and Benchmarking

7

Part IV

Performance Modeling

9

Chapter 2

The Roofline Model

Samuel W. Williams

Lawrence Berkeley National Laboratory

2.1 Introduction . 12
2.1.1 Abstract Architecture Model . 12
2.1.2 Communication, Computation, and Locality . 12
2.1.3 Arithmetic Intensity . 13
2.1.4 Examples of Arithmetic Intensity . 14

2.2 The Roofline . 15
2.3 Bandwidth Ceilings . 17

2.3.1 NUMA . 17
2.3.2 Prefetching, DMA, and Little’s Law . 18
2.3.3 TLB issues . 19
2.3.4 Strided Access Patterns . 19

2.4 In-Core Ceilings . 19
2.4.1 Instruction-Level Parallelism . 20
2.4.2 Functional Unit Heterogeneity . 21
2.4.3 Data-Level Parallelism . 22
2.4.4 Hardware Multithreading . 22
2.4.5 Multicore Parallelism . 23
2.4.6 Combining Ceilings . 24

2.5 Arithmetic Intensity Walls . 24
2.5.1 Compulsory Miss traffic . 25
2.5.2 Capacity Miss traffic . 26
2.5.3 Write Allocation Traffic . 26
2.5.4 Conflict Miss Traffic . 26
2.5.5 Minimum Memory Quanta . 27
2.5.6 Elimination of Superfluous Floating-point Operations 27

2.6 Alternate Roofline Models . 27
2.6.1 Hierarchically Architectural Model . 28
2.6.2 Hierarchically Roofline Models . 29

2.7 Summary . 29
2.8 Acknowledgements . 29
2.9 Glossary . 30

The Roofline model is a visually intuitive performance model constructed
using bound and bottleneck analysis [11–13]. It is designed to drive program-
mers towards an intuitive understanding of performance on modern computer
architectures. As such, it not only provides programmers with realistic perfor-
mance expectations, but also enumerates the potential impediments to per-
formance. Knowledge of these bottlenecks drives programmers to implement
particular classes of optimizations. This chapter will focus on architecture-

11

12 Performance Tuning of Scientific Applications

oriented roofline models as opposed to using performance counters to generate
a roofline model.

This chapter is organized as follows. Section 2.1 defines the abstract ar-
chitecture model used by the roofline model. Section 2.2 introduces the basic
form of the roofline model, where sections Section 2.3–2.6 iteratively refine
the model with tighter and tighter performance bounds.

2.1 Introduction

In this section we define the abstract architectural model used for the
Roofline model. Understanding of the model is critical in one’s ability to ap-
ply the Roofline model to widely varying computational kernels. We then in-
troduce the concept of arithmetic intensity to the reader and provide several
diverse examples that the reader may find useful in their attempt to estimate
arithmetic intensity for their kernels of interest. Finally, we define the requisite
key terms in this Chapter’s glossary.

2.1.1 Abstract Architecture Model

The roofline model presumes a simple architectural model consisting of
black boxed computational elements (e.g. CPUs, Cores, or Functional Units)
and memory elements (e.g. DRAM, caches, local stores, or register files) in-
terconnected by a network. Whenever one or more processing elements may
access a memory element, that memory element is considered shared. In gen-
eral, there is no restriction on the number or balance of computational and
memory elements. As such, a large number of possible topologies exist, allow-
ing the model to be applied to a large number of current and future computer
architectures. At any given level of the hierarchy, processing elements may
only communicate either with memory elements at that level, or with mem-
ory elements at a coarser level. That is, processors, cores, or functional units
may only communicate with each other via a shared memory.

Consider Figure 2.1. We show two different dual-processor architectures.
Conceptually, any processor can reference any memory location. However,
Figure 2.1(a) partitions memory and creates additional arcs. This is done to
convey the fact that the bandwidth to a given processor may depend on which
memory the address may lie in. As such, these figures are used to denote non-
uniform memory access (NUMA) architectures.

The Roofline Model 13

CPU0 CPU1

memory0 memory1

CPU0 CPU1

memory0

(a) (b)

1 2 4 3
5 6

FIGURE 2.1: High-level architectural model showing two black-boxed pro-
cessors either connected to separate memories or to a common shared memory.
The arrows denote the ISA’s ability to access information and not necessarily
hardware connectivity.

2.1.2 Communication, Computation, and Locality

With this model, a kernel can be distilled down to the movement of data
from one or more memories to a processor where it may be buffered, dupli-
cated, and computed on. That modified data or any new data is then com-
municated back to those memories.

The movement of data from the memories to the processors, or communica-
tion, is bounded by the characteristics of the processor–memory interconnect.
Consider Figure 2.1. There is a maximum bandwidth on any link as well as
a maximum bandwidth limit on any subset of links i.e. the total bandwidth
from or to memory0 may be individually limited.

Computation, for purposes of this chapter, consists of floating-point opera-
tions including multiply, add, compare, etc... Each processor has an associated
computation rate. Nominally, as processors are black boxed, one does not dis-
tinguish how performance is distributed among cores within a multicore chip.
However, when using a hierarchical model for multicore (discussed at the end
of this chapter), rather than only modeling memory–processor communica-
tion, and processor computation, he will model memory–cache communica-
tion, cache–core communication, and core computation.

Although there is some initial locality of data in memoryi, once moved to
processorj , we may assume that caches seamlessly provide for locality within
the processor. That is, subsequent references to that data will not generate
capacity misses in 3C’s vernacular [6]. This technique may be extended to the
cache hierarchy.

2.1.3 Arithmetic Intensity

Arithmetic intensity is a kernel’s ratio of computation to traffic and is
measured in flops:bytes. Remember traffic is the volume of data to a par-

14 Performance Tuning of Scientific Applications

(a) (b) (c)

temp=0.0;
for(i=0;i<N;i++){

 temp = A[i]*A[i];
}

magnitude = sqrt(temp);

C[i,j]=0.0;

for(i=0;i<N;i++){
 for(j=0;j<N;j++){

 for(k=0;k<N;k++){
 C[i,j] += A[i,k]*B[k,j];
}}}

for(i=0;i<N;i++){
 for(j=0;j<N;j++){

 C[i,j] = a*A[i,j] +
 b*(A[i,j-1] +

 A[i-1,j] +
 A[i+1,j] +
 A[i,j+1]);

}}

0.125 0.25 N / 16

FIGURE 2.2: Arithmetic Intensities for three common HPC kernels

ticular memory. It is not the number of loads and stores. Processors whose
caches filter most memory requests will have very high arithmetic intensities.
A similar concept is machine balance [3] which represents the ratio of peak
floating-point performance to peak bandwidth. A simple comparison between
machine balance and arithmetic intensity may provide some insight as to po-
tential performance bottlenecks. That is, when arithmetic intensity exceeds
machine balance, it is likely the kernel will spend more time in computation
than communication. As such, it is likely compute bound. Unfortunately such
simple approximations gloss over many of the details of computer architecture
and result in performance far below performance expectations. Such situations
motivated the creation of the roofline model.

2.1.4 Examples of Arithmetic Intensity

Figure 2.2 presents pseudocode for three common kernels within scientific
computing: calculation of vector magnitude, a stencil sweep for a 2D PDE, and
dense matrix-matrix multiplication. Assume all arrays are double precision.

Arithmetic intensity is the ratio of total floating-point operations to total
DRAM bytes. Assuming N is sufficiently large that the array of Figure 2.2(a)
does not fit in cache and enough to amortize the poor performance of the
square root, then we observe that it performs N flops while transferring only
8·N doubles. The second access to A[i] exploits the cache/register file locality
within the processor. The result is an arithmetic intensity of 0.125 flops per
byte.

Figure 2.2(b) presents a much more interesting example. Assuming the
processor’s cache is substantially larger than 8 ·N , but substantially smaller
than 16 · N2, we observe that the leading point in the stencil A[i,j+1] will
eventually be reused by subsequent stencils as A[i+1,j], A[i,j], A[i-1,j],
and A[i,j-1]. Although the results is that references to A[i,j] only generates
8 · N2 bytes of communication, accesses to C[i,j] generate 16 · N2 bytes
because write-allocate cache architectures will generate both a read for the
initial fill on the write miss in addition to the eventual write back. As the
code performs 6 ·N2 flops, the resultant arithmetic intensity is 6·N2

24·N2 = 0.25.
Finally, Figure 2.2(c) shows the pseudocode for a dense matrix-matrix

The Roofline Model 15

multiplication. Assuming the cache is substantially larger than 24 ·N2, then
A[i,j], B[i,j], and C[i,j] can be kept in cache and only their initial and
write back references will generate DRAM memory traffic. As such, we observe
the loop nest will perform 2 · N3 flops while only transferring 32 · N2 bytes.
The result is an arithmetic intensity of N

16 .

2.2 The Roofline

Given the aforementioned abstract architectural model and a kernel’s es-
timated arithmetic intensity, we create a intuitive and utilitarian model that
allows programmers rather than computer architects to bound attainable per-
formance. We call this model the “Roofline Model”. The roofline model is
built using Bound and Bottleneck analysis [7]. As such we may consider the
two principle performance bounds (computation and communication) in isola-
tion and compare their corresponding times to determine the bottleneck and
attainable performance. Consider Figure 2.1(b). Assuming we have a simple
homogenous kernel that must transfer B bytes of data from memory0 and
perform F

2 floating-point operations on both CPU0 and CPU1, the memory
can support PeakBandwidth bytes per second and combined, the processors
can perform PeakPerformance floating-point operations per second, simple
analysis suggests it will take B

PeakBandwidth seconds to transfer the data and
F

PeakPerformance seconds to compute on it. Assuming one may perfectly overlap
communication and computation it will take:

Total Time = max


F / PeakPerformance
B / PeakBandwidth

(2.1)

Reciprocating and multiplying by F Flops, we observe performance is bound
to:

AttainablePerformance (GFlop/s) = min


PeakPerformance
PeakBandwidth×ArithmeticIntensity

(2.2)

Where Arithmetic Intensity is F/B.
Although a given architecture has a fixed peak bandwidth and peak perfor-

mance, arithmetic intensity will vary dramatically from one kernel to the next
and substantially as one optimizes a given kernel. As such, we may plot attain-
able performance as a function of arithmetic intensity. Given the tremendous
range in performance and arithmetic intensities, we will plot these figures on
a log-log scale.

Using the Stream benchmark [9], one may determine that the maximum
bandwidth one can attain using a 2.3GHz dual-socket × quad-core Opteron
2356 Sun 2200 M2 is 16.6 GB/s. Similarly, using a processor optimization man-
ual it is clear that the maximum performance one can attain is 73.6 GFlop/s.

16 Performance Tuning of Scientific Applications

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

1

peak performance (73.6 Gflop/s)

Opteron 2356
(Barcelona)

Kernel #1

Kernel #2

Kernel #3
processor-bandwidth

roofline
(slope is bandwidth)

each kernel’s
range in

arithmetic
intensity

performance roofline
(Y-coordinate is
performance)

each kernel’s
performance

bound

1

2

3

4

FIGURE 2.3: Roofline Model for an Opteron SMP. Also, performance
bounds are calculated for three non-descript kernels.

Of course, as shown in Equation 2.2, it is not possible to always attain both,
and in practice may not be possible to achieve either.

Figure 2.3 visualizes Equation 2.2 for this SMP via the black line. Observe
that as arithmetic intensity increases, so to does the performance bound. How-
ever, at the machine’s Flop:Byte ratio, the performance bound saturates at
the machine’s peak performance. Beyond this point, although performance is
maximum, used bandwidth decreases. Note, the slope of the roofline in the
bandwidth-limited regions is actually the machine’s Stream bandwidth. How-
ever, on a log-log scale the line is always appears at a 45-degree angle. On
this scale, doubling the bandwidth will shift the line up instead of changing
its perceived slope.

This Roofline model may be used to bound the Opteron’s attainable perfor-
mance for a variety of computational kernels. Consider three generic kernels,
labeled 1, 2, and 3 in Figure 2.3, with Flop:DRAM byte arithmetic intensities
of about 1, 4, and 16 respectively. When mapped onto Figure 2.3, we observe
that the Roofline at Kernel #1’s arithmetic intensity is in the bandwidth-
limited region (i.e. performance is still increasing with arithmetic intensity).
Scanning upward from its X-coordinate along the Y-axis, we may derrive a per-
formance bound based on the Roofline at said X-coordinate. Thus, it would be
unreasonable to expect Kernel #1 to ever attain better than 16 GFlop/s. With
an arithmetic intensity of 16, Kernel #3 is clearly ultimately compute-bound.
Kernel #2 is a more interesting case as its performance is heavily dependent
on exactly calculating arithmetic intensity as well as both the kernel’s and
machine’s ability to perfectly overlap communication (loads and stores from
DRAM) and computation. Failure on any of these three fronts will diminish
performance.

The Roofline Model 17

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

1

peak GFlop/s

Opteron 2356
(Barcelona)

CPU0 CPU1

memory0 memory1

0 1

(b)

CPU0 CPU1

memory0 memory1

0 3

(a)

 #pragma omp parallel for
 for (j=0; j<N; j++){

 a[j] = 1.0;
 b[j] = 2.0;

 c[j] = 0.0;
 }

 for (j=0; j<N; j++){
 a[j] = 1.0;

 b[j] = 2.0;
 c[j] = 0.0;

 }

FIGURE 2.4: NUMA ceiling resulting from improper data layout. The code
shown is initialization-only. It is not the possible computational kernels.

In terms of the Roofline model, performance is no longer a scalar, but a
coordinate in arithmetic intensity–GFlop/s space. As the roofline itself is only
a performance bound, it is common the actual performance will be below the
roofline (it can never be above). As programmers interested in architectural
analysis and program optimization, we are motivated to understand why per-
formance is below the roofline (instead of on it) and how we may optimize
a program to rectify this. The following sections refine the roofline model to
enhance its utility in this field.

2.3 Bandwidth Ceilings

Eliciting good performance from modern SMP memory subsystems can be
elusive. Architectures exploit a number of techniques to hide memory latency
(HW, SW prefetching, TLB misses) and increase memory bandwidth (multiple
controllers, burst accesses, NUMA). For each of these architectural paradigms,
there is a commensurate set of optimizations that must be implemented to
extract peak memory subsystem performance. This section enumerates these
potential performance impediments and visualizes them using the concept of
bandwidth performance ceilings. Essentially a ceiling is structure internal to
the roofline denoting a complete failure to exploit an architectural paradigm.
In essence, just as the roofline acted to constrain performance to be beneath
it, so too do ceilings constrain performance to be beneath them. Software
optimization removes these ceilings as impediments to performance.

18 Performance Tuning of Scientific Applications

2.3.1 NUMA

We begin by considering the NUMA issues in the Stream benchmark as it
will likely be illustrative of the solution to many common optimization mis-
takes made when programming multisocket SMPs. As written, there is a loop
designed to initialize the values of the arrays to be streamed. Subtly, this loop
is also used to distribute data among the processor sockets through the combi-
nation of a OpenMP pragma (#pragma omp parallel for) and the use of the
first touch policy [4]. Although the virtual addresses of the elements appear
contiguous, their physical addresses are mapped to the memory controllers on
different sockets. This optimized case is well visualized in Figure 2.4(a). We
observe the array (blue grid) has been partitioned with half placed in each of
the two memories. When the processors compute on this data they find that
the pieces of the array they’re tasked with using are in the memory to which
they have the highest bandwidth. If, one the other hand, the pragma were
omitted, then the array would likely be placed in its entirety within memory0.
As such, not only does one forgo half the system’s peak bandwidth by not
using the other memory, but he also looses additional performance as link 1
likely has substantially lower bandwidth than 0 or 3, but must transfer just
as much data. We may plot the resultant bandwidth on the Roofline figure to
the right. We observe a 2.5× degradation in performance. Not only will this
depress the performance of any memory-bound kernels, but it expands the
range of memory-bound arithmetic intensities to about 10 Flops per DRAM
byte.

Such performance bugs can be extremely difficult to find regardless of
whether one uses OpenMP, POSIX threads, or some other threading library.
Under very common conditions, it can also occur even when binding threads
to cores under pthreads because data is bound to a controller by the OS,
not by a malloc() call. For example, an initial malloc() call followed by an
initialization routine may peg certain virtual addresses to one controller or
the other. However, if that data is free()’d, it is returned to the heap, not
the OS. As such, a subsequent call to malloc() will use data already on the
heap, and already pinned to a controller than the one that might be desired.
Unless cognizant of these pitfalls, one should strongly consider only threading
applications within a socket instead of across an entire SMP node.

2.3.2 Prefetching, DMA, and Little’s Law

Little’s Law [1] states that the concurrency (independent memory opera-
tions) that must be injected into the memory subsystem to attain peak per-
formance is the product of memory latency and peak memory bandwidth.
For processors like Opterons, this translates into more than 800 bytes of data
(perhaps 13 cache lines). Hardware vendors have created a number of tech-
niques to generate this concurrency. Unfortunately, methods like out-of-order
execution don’t operate on cache lines but doubles. As such, it is difficult to

The Roofline Model 19

get a hundred loads in flight. The more modern methods include software
prefetching, hardware prefetching, and DMA. Software prefetching and DMA
are similar in that they are both asynchronous software methods of expressing
more memory-level parallelism than one could normally achieve via a scalar
ISA. The principle different between the two is granularity. Software prefetch-
ing only operates on cache lines where DMA operates on arbitrary numbers of
cache lines. Hardware prefetchers attempt to infer a streaming access pattern
given a series of cache misses. As such they don’t require software modifi-
cations, express substantial memory-level parallelism, but are restricted to
particular memory access patterns.

It is conceivable that one could create a version of Stream that mimics
the memory access pattern observed in certain applications. For example,
a few pseudorandom access pattern streams may individually trip up any
hardware or software prefetcher, but collectively allow expression of memory-
level parallelism through DMA or software prefetch. As such, one could draw
a series of ceilings below the roofline that denote every decreasing degrees of
memory-level parallelism.

2.3.3 TLB issues

Modern microprocessors use virtual memory and accelerate the translation
to physical addresses via small highly-associative translation lookaside buffers
(TLBs). Unfortunately, these act like caches on the page table (caching page
table entries). If a kernel’s working set, as measured in page table entries,
exceeds the TLB capacity (or associativity) then one generates TLB capacity
(or conflict) misses. Such situations arise more often than one might think.
Simple cache blocking for matrix multiplication can result in enough disjoint
address streams which although they may fit in cache, do not fit in the TLB.

One could implement a version of Stream that scales the number of streams
for operations like TRIAD. Doing so would often result in a about the same
bandwidth for low numbers of streams, but would suddenly dip for an addi-
tional array. This dip could be plotted on the roofline model as a bandwidth
ceiling, and labeled with the number of arrays required to trigger it.

2.3.4 Strided Access Patterns

A common solution to the above problem is to lay out the data as one
multicomponent array (i.e. an array of cartesian vectors instead of 3 arrays
one for each component). However, the computational kernels may not use all
of these components at a time. Nevertheless, the data must still be transfered.
Generally, small strides (less than the cache line size) should be interpreted as
a decrease in arithmetic intensity, where large strides can represent a lack of
spatial locality and memory-level parallelism. One may plot a ceiling for each
stride with the roofline being stride-1 (unit-stride).

20 Performance Tuning of Scientific Applications

2.4 In-Core Ceilings

Given the complexity of modern core architectures, floating-point perfor-
mance simply doesn’t fall out based on arithmetic intensity. Rather architec-
tures exploit a number of paradigms to improve peak performance including
pipelining, superscalar out-of-order execution, SIMD, hardware multithread-
ing, multicore, heterogeneity, etc... Unfortunately, a commensurate set of op-
timizations (either generated by the compiler or explicitly expressed by the
user) are required to fully exploit these paradigms. This section enumerates
these potential performance impediments and visualizes them using the con-
cept of in-core performance ceilings. Like bandwidth ceilings, these ceilings
act to constrain performance coordinates to lie beneath them. The following
section enumerate some of the common ceilings. Each is examined in isolation.
All code examples assume an x86 architecture.

2.4.1 Instruction-Level Parallelism

Every instruction on every architecture has an associated latency repre-
senting the time from when the instruction’s operands are available to the
time where the results are made available to other instructions (assuming no
other resource stalls). For floating-point computational instructions like mul-
tiply or add, these latencies are small (typically less than 8 cycles). Moreover,
every microprocessor has an associated dispatch rate (a bandwidth) that rep-
resents how many independent instructions can be executed per cycle. Just
as Little’s Law can be used to derive the concurrency demanded by the mem-
ory subsystem using the bandwidth–latency product, so too can it be used
to estimate the concurrency each core demands to keep its functional units
busy. We define this to be the instruction-level parallelism. When a thread of
execution falls short of expressing this degree of parallelism, functional units
will go idle, and performance will suffer [2].

As an example, consider Figure 2.5. In this case we plot scalar floating-
point performance as a function of DRAM arithmetic intensity. However, on
the roofline figure we note the performance impact from a lack of instruction-
level parallelism through ILP ceiings (in red). Figure 2.5(a) presents a code
snippet in which the loop is näıvelyunrolled either by the user or the compiler.
Although this has the desired benefit of amortizing an loop overhead, it does
not increase the floating-point add instruction-level parallelism — the adds
to sum will be serialized. Even a superscalar processor must serialize these
operations. Conversely, Figure 2.5(b) shows an alternate unrolling method in
which partial sums are maintained within the loop and reduced (not shown)
upon loop completion. If one achieves sufficient cache locality for b[i] then
arithmetic intensity will be sufficiently great that Figure 2.5(b) should sub-
stantially outperform (a).

The Roofline Model 21

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

no ILP

1

peak GFlop/s

Opteron 2356
(Barcelona)

2-way ILP

3-way ILP

FMA, perfect load balance,
etc…

peak scalar GFlop/s
without ILP,
loose 75%
of potential

performance

without ILP,
many more

kernels become
compute-bound

(a) (b)

 for(i=…){
 sum+=a*b[i];

 }

 for(i=…){
 sum+=a*b[i];

 sum+=a*b[i+1];
 }

 for(i=…){
 sum+=a*b[i];

 sum+=a*b[i+1];
 sum+=a*b[i+2];

 sum+=a*b[i+3];
 }

 for(i=…){
 sum0+=a*b[i];

 sum1+=a*b[i+1];
 }

 for(i=…){
 sum0+=a*b[i];

 sum1+=a*b[i+1];
 sum2+=a*b[i+2];

 sum3+=a*b[i+3];
 }

FIGURE 2.5: Performance ceilings as a result of insufficient instruction-level
parallelism. (a) a code snippet in which the loop is unrolled. note, (FP add)
ILP remains constant. (b) code snippet in which partial sums are computed.
ILP increases with unrolling.

Subtly, without instruction-level parallelism, the arithmetic intensity at
which a processor becomes compute-bound is much lower. In a seemingly
paradoxical result, it is possible that many kernels may show the signs of
being compute-bound (parallel efficiency), yet deliver substantially suboptimal
performance.

2.4.2 Functional Unit Heterogeneity

Processors like AMD’s Opteron’s and Intel’s Nehalem have floating-point
execution units optimized for certain instructions. Specifically, although they
both have two pipelines capable of simultaneously executing two floating-
point instructions, one pipeline may only perform floating-point additions,
while the other may only perform floating-point multiplies. This creates a
potential performance impediment. For codes that are dominated by one or
the other, attainable performance will be half that of a code that has a perfect
balance between multiplies and adds. For example, codes that solve PDEs on
structured grids often perform stencil operations which are dominated by adds
with very few multiplies, where codes that perform dense linear algebra often
see a near perfect balance between multiplies and adds. As such, we may
create a series of ceilings based on the ratio of adds to multiplies. As the ratio
gets further and further from 1, the resultant ceiling will approach one half of
peak.

Processors like Cell, GPUs, POWER, and Itanium exploit what is known
as fused-multiply add (FMA). These instructions are implemented on execu-

22 Performance Tuning of Scientific Applications

tion units where instead of performing multiplies and adds in parallel, they
are performed in sequence (multiply two numbers and add a third to the
result). Obviously the primary advantage of such an implementation is to ex-
ecute the same number of floating-point operations as a machine of twice the
issue width. Nevertheless, such an architecture creates a similar performance
issue to the case of separate multipliers and adders in that unless the code is
entirely dominated by FMA’s, performance may drop by a factor of two.

2.4.3 Data-Level Parallelism

Modern microprocessor vendors have attempted to boost their peak per-
formance through the addition of Single Instruction Multiple Data (SIMD)
operations. In effect, with a single instruction, a program may express two or
four-way data-level parallelism. For example, the x86 instruction addps per-
forms four single-precision floating-point add operations in parallel. Ideally the
compiler should recognize this form of parallelism and generate these instruc-
tions. However, due to the implementation’s rigid nature, compilers often fail
to generate these instructions. Moreover, even programmers may not be able
to exploit them due to rigid program and data structure specifications. Failure
to exploit these instructions can substantially depress kernel performance.

Consider Figure 2.6. The code is a simplified version of that in Fig-
ure 2.5(b). We observe there is substantial ILP, but only floating-point adds
are performed. As such, there is no data-level parallelism, and performance
is bounded to less than 18.4 GFlop/s. Most x86 compilers allow the user to
SIMDize their code via intrinsics — small functions mapped directly to one
or two instructions. We observe that the first step in this process is to replace
the conventional C assignments with the scalar form of these intrinsics. Of
course doing so will not improve our performance bound because it has not
increased the degree of data-level parallelism. However, when using the pd
form of the intrinsics we should unroll the loop 8 times so that we may simulta-
neously express both 2-way data level parallelism and 4-way instruction-level
parallelism. Doing so improves our performance bound to 36.8 GFlop/s. As
discussed in the previous subsection, we cannot achieve 73.6 due to the fact
that this code does not perform any floating-point multiplies.

2.4.4 Hardware Multithreading

Hardware multithreading [5] has emerged as an effective solution to the
memory- and instruction-level parallelism problems with a single architectural
paradigm. Threads whose current instruction’s operands are ready are execute
while the others wait in a queue. As all of this is performed in hardware there
is no apparent context switching. There are no ILP ceilings as typically there is
enough thread-level parallelism to cover the demanded instruction-level paral-
lelism. Moreover, the exemplar of this architecture, Sun’s Niagara [8], doesn’t
implement SIMD or heterogeneous functional units. However, a different set

The Roofline Model 23

 for(i=…){
 sum01=_mm_add_pd(sum01,…b[i]…);

 sum23=_mm_add_pd(sum23,…b[i+2]…);
 sum45=_mm_add_pd(sum45,…b[i+4]…);

 sum67=_mm_add_pd(sum67,…b[i+6]…);
 }

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2
G

Fl
op

/s

Arithmetic Intensity

no SIMD

1

peak GFlop/s

Opteron 2356
(Barcelona)

50% SIMD
75% SIMD

full ILP, TLP, …

without SIMD,
codes become

compute-
bound earlier

without SIMD,
loose 50%
of potential

performance
peak FP Add GFlop/s

 for(i=…){
 sum0=_mm_add_sd(sum0,…b[i]…);

 sum1=_mm_add_sd(sum1,…b[i+1]…);
 sum2=_mm_add_sd(sum2,…b[i+2]…);

 sum3=_mm_add_sd(sum3,…b[i+3]…);
 }

 for(i=…){
 sum0+=b[i];

 sum1+=b[i+1];
 sum2+=b[i+2];

 sum3+=b[i+3];
 }

FIGURE 2.6: Example of Ceilings associated with data-level parallelism.

of ceilings normally not seen on superscalar processors appear: the floating-
point fraction of the dynamics instruction mix. All processors have a finite
instruction fetch and decode bandwidth (the number of instructions that can
be fetched per cycle). On superscalar processors, this bandwidth is far greater
than the instruction bandwidth required under ideal conditions to saturate
the floating-point units. However, on processors like Niagara, as the floating-
point fraction dips below 50%, the non floating-point instructions begin to
sap instruction bandwidth away from the floating-point pipeline. The result:
performance drops. The only effective solution here is improving the quality
of code generation.

More recently, superscalar manufactures have begun to introduce hard-
ware multithreading into their processor lines including Nehalem, Larrabee,
and POWER7. In such situations, SPMD programs may not suffer from ILP
ceilings but may invariably see substantial performance degradation due to
DLP and heterogenous functional unit ceilings.

2.4.5 Multicore Parallelism

Multicore has introduced yet another form of parallelism within a socket.
When programs regiment cores (and threads) into bulk synchronous compu-
tations (compute/barrier), load imbalance can severely impair performance.
Such an imbalance can be plotted using the roofline model. To do this, one
may count the total number of floating-point operations performed across all
threads and the time between the start of the computation and when the last
thread enters the barrier. The ratio of these two numbers is the (load imbal-
anced) attained performance. Similarly, one can sum the times each thread
spends in computation and dividing by the total number of threads. The ra-

24 Performance Tuning of Scientific Applications

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

FP add only

1

peak GFlop/s

Opteron 2356
(Barcelona)

no SIMD

no ILP

100% SIMDized

full ILP

balanced mul/add

load balanced multicore

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

FP add only

1

peak GFlop/s

Opteron 2356
(Barcelona)

no SIMD

no ILP

100% SIMD

full ILP

balanced mul/add

load balanced multicore

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

FP add only

1

peak GFlop/s

Opteron 2356
(Barcelona)

no SIMD

no ILP
100% SIMDized

full ILP

balanced mul/add

load balanced multicore

FIGURE 2.7: Equivalence of Roofline models

tio of total flops to this number is the performance that could be attained if
properly load balanced. As such, one can visualize the resultant performance
loss as a load balance ceiling.

2.4.6 Combining Ceilings

All these ceilings are independent and thus may be combined as needed.
For example, a lack of instruction-level parallelism can be combined with a lack
of data-level parallelism to severely depress performance. As such, one may
draw multiple ceilings (representing the lack of different forms of parallelism)
on a single roofline figure as visualized in Figure 2.7.

However, the question of how ceilings should be ordered arises. Often,
one uses intuition to order the ceilings based on which are most likely to be
implicit in the algorithm or discovered by the compiler. Ceilings placed near
the roofline are those that are not present in the algorithm or unlikely to be
discovered by the compiler. As such, based on this intuition, one could adopt
any of the three equivalent roofline models in Figure 2.7.

2.5 Arithmetic Intensity Walls

Thus far, we’ve assumed the total DRAM bytes within the arithmetic in-
tensity ratio is dominated by “compulsory” memory traffic in 3C’s parlance [6].
Unfortunately, on real codes there are a number of other significant terms in
the arithmetic intensity denominator.

AI =
Total FP Operations

Compulsory + Allocation + Capacity + Conflict Memory Traffic + ...
(2.3)

In much the same way one denotes ceilings to express a lack of instruction,

The Roofline Model 25

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

+w
rit

e
al

lo
ca

tio
ns

1

peak GFlop/s

Opteron 2356
(Barcelona)

+c
ap

ac
ity

 m
is

se
s

co
m

pu
ls

or
y

m
is

se
s

+c
on

fli
ct

 m
is

se
s

to eliminate,
pad arrays

to eliminate,
restructure loops

(cache block)

to eliminate, use
cache bypass
instructions

92% loss in
potential

performance

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

+w
rit

e
al

lo
ca

tio
ns

1

peak GFlop/s

Opteron 2356
(Barcelona)

co
m

pu
ls

or
y

m
is

se
s

to eliminate, use
cache bypass
instructions

30% loss in
performance

FIGURE 2.8: Performance interplay between Arithmetic Intensity and the
Roofline for two different problem sizes for the same nondescript kernel.

data, or memory parallelism, one can denote arithmetic intensity walls to
denote reduced arithmetic intensity as a result of different types superfluous
memory traffic above and beyond the compulsory memory traffic — essen-
tially, additional terms in the denominator. As such, Equation 2.3 shows that
write allocation traffic, capacity cache misses, conflict cache misses, among
others contribute to reduced arithmetic intensity. These arithmetic intensity
walls act to constrain arithmetic intensity and when bandwidth-limited, con-
strain performance and is visualized in Figure 2.8. As capacity and conflict
misses are heavily dependent on whether the specified problem size exceed the
cache’s capacity and associativity, the walls are execution-dependent rather
than simply architecture-dependent. That is, a small, non power-of-two prob-
lem may not see any performance degradation due to capacity or conflict miss
traffic, but for the same code, a large, near power-of-two problem size may
result in substantial performance loss as arithmetic intensity is constrained to
be less than 0.2.

The following subsections discuss each term in the denominator and pos-
sible solutions to their impact on performance.

2.5.1 Compulsory Miss traffic

It should be noted that compulsory traffic may not the the minimum mem-
ory traffic for an algorithm. Rather compulsory traffic is only the minimum
memory traffic required for a particular implementation. The most obvious ex-
ample of elimination of compulsory traffic is changing data types. e.g. double
to single or int to short. For memory-bound kernels, this transformation
may improve performance by a factor of two, but should only be performed

26 Performance Tuning of Scientific Applications

if one can guarantee correctness always or through the creation of special
cases. More complex solutions involve in-place calculations or register block-
ing sparse matrix codes [10].

2.5.2 Capacity Miss traffic

Both caches and local stores have a finite capacity. In the case of the
former, when a kernel’s working set exceeds the cache capacity, the cache
hardware will detect that data must be swapped out and capacity misses will
occur. The result is an increase in DRAM memory traffic, and a reduced
arithmetic intensity. When performance is limited by memory bandwidth,
it will diminished by a commensurate amount. In the case of local stores,
a program whose working size exceeds the local store size will not function
correctly.

Interestingly, the most common solution to eliminating capacity misses on
cache-based architectures is the same as to obtaining correct behavior on local
store machines: cache blocking. In this case loops are restructured to reduce
the working set size and maximize arithmetic intensity.

2.5.3 Write Allocation Traffic

Most caches today are write-allocate. That is, upon a write miss, the cache
will first evict the selected line, then load the target line from main memory.
The result is that writes generate twice the memory traffic as reads: cache line
fill plus a write back vs. one fill. Unfortunately, this approach is often wasteful
on scientific codes where large blocks of arrays are immediately written with-
out being read. There is no benefit in having loaded the cache line when the
next memory operations will obliterate the existing data. As such, the write
fill was superfluous and should be denoted as a arithmetic intensity wall.

Modern architectures often provide a solution to this quandry either in the
form of SSE’s cache bypass instruction movntpd or PowerPC’s block init in-
struction dcbz. The use of the movntpd instruction allows programs to bypass
the cache in its entirety and write to the write combining buffers. The advan-
tage: elimination of write allocation traffic and cache pressure is reduced. The
dcbz instruction allocates a line in the cache and zeros its contents. The ad-
vantage is that write allocation traffic has been eliminated, but cache pressure
has not been reduced.

2.5.4 Conflict Miss Traffic

Similarly, unlike local stores, caches are not fully associative. That is, de-
pending on address, only certain locations in the cache maybe used to store
the requested cache line — a set. When one exhausts this associativity of the
set, one element from that set must be selected for eviction. The result: a
conflict miss and superfluous memory traffic.

The Roofline Model 27

Conflict misses are particularly prevalent on power-of-two problem sizes
as this is a multiple of the number of sets in a cache, but can be notoriously
difficult to track down due to the complexities of certain memory access pat-
terns. Nevertheless for many well structured codes, one may pad arrays or
data structures cogniziant of the memory access pattern to ensure that differ-
ent sets are accessed and conflict misses are avoided. Conceptually, 1D array
padding transforms an array from Gird[Z][Y][X]) to Gird[Z][Y][X+pad])
regardless of whether the array was statically or dynamically allocated.

2.5.5 Minimum Memory Quanta

Näıvely, one could simple count the number of doubles a program refer-
ences and estimate arithmetic intensity. However, one should be mindful that
both cache- and local store-based architectures operate on some minimum
memory quanta hereafter referred to as cache lines. Typically these lines are
either 64 or 128 bytes. All loads and stores after being filtered by the cache are
aggregated into these lines. When this data is not subsequently used in its en-
tirety, superfluous memory traffic has been consumed without a performance
benefit. As such another term is added to the denominator and arithmetic
intensity is depressed.

2.5.6 Elimination of Superfluous Floating-point Operations

Normally, when discussing arithmetic intensity walls, we think of adding
terms to the denominator of arithmetic intensity. However, one should con-
sider the possiblity that the specified number of floating-point operations may
not be a minimum, but just a compulsory number set forth by a particular
implementation. For instance, one might calculate the number of flops within
a loop and scale by the number of loop iterations to calculate a kernel’s flop
count. However, the possibility of common subexpression elimination (CSE)
exists when one or more loop iterations are inspected in conjunction. The re-
sult, is that the flop count may be reduced. This has the seemingly paradoxical
results of decreased floating-point performance, but improved application per-
formance. The floating-point performance may decrease because arithmetic
intensity was reduced while bandwidth-limited. However, because the total
requisite work (as measured in floating-point operations) was reduced, the
time to solution may have also been reduced.

Although this problem may seem academic, it has real world implications
as a compiler may discover CSE optimizations the user didn’t. When coupled
with performance counter measured flop counts, the user may find himself in
a predicament rectifying his performance estimations and calculations and the
empirical performance observations.

28 Performance Tuning of Scientific Applications

memory0 memory1

(a)

core0 core1

LS0 LS1

core2 core3

LS2 LS3

memory0 memory1

(b)

core0 core1

cache0 cache1

core2 core3

FIGURE 2.9: Refinement of the previous simple bandwidth-processor model
to incorporate caches or local stores. Remember, arrows denote the ability to
access information and not necessarily hardware connectivity.

2.6 Alternate Roofline Models

Thus far, we’ve only discussed a one-level processor-memory abstraction.
However, there are certain computational kernel–architecture combinations
for which increased optimization creates a new bandwidth bottleneck — cache
bandwidth. One may construct separate roofline models for each level of the
hierarchy and then determine the overall bottleneck. In this section we discuss
this approach and analyze example codes.

2.6.1 Hierarchically Architectural Model

One may refine the original processor–memory architectural model by hi-
erarchically refining the processors into cores and cache (which essentially
look like another level of processors and memories). Thus, if the CPUs of Fig-
ure 2.1 were in fact dual-core processors, one could construct several different
hierarchical models (Figure 2.9) depending on the cache/local store topology.
Figure 2.9(a) shows it is possible for core0 to read from cache3 (simple cache
coherency), but on the local store architecture, although any core can read
from any DRAM location, core0 can only read LocalStore0.

Just as there were limits on both individual and aggregate processor-
memory bandwidths, so too are there limits on both individual and aggre-
gate core–cache bandwidths. As a result, what were NUMA ceilings (arising
when data crossed low bandwidth/high load links) when transferring data
from memory to processor, become NUCA (non-uniform cache access) ceilings
when data resident in one or more caches must cross low bandwidth/high load
links to particular cores

The Roofline Model 29

Ultimately, this approach may be used to refine cores down to the register
file–functional unit level. However, when constructing a model to analyze a
particular kernel, the user may have some intuition as to where the bottleneck
lies — i.e. L2 cache–core bandwidth with good locality in the L2. In such a
situations, there is no need to construct a model with coarser granularities
(L3, DRAM, etc...) or finer granularities (register files).

2.6.2 Hierarchically Roofline Models

Given this memory hierarchy, we may model performance using two
roofline models. First, we model the performance involved in transferring
the data from DRAM to the caches or local stores. This of course means
we must calculate an arithmetic intensity based on how data will be dissemi-
nated among the caches and the total number of floating-point operations. Us-
ing this arithmetic intensity and the characteristics of the processor–DRAM
interconnect, we may bound attainable performance. Second, we calculate
core–cache arithmetic intensity involved in transferring data to/from caches
or local stores. We may also plot this using the roofline model. This bound
may be a tighter or looser bound depending on architecture and kernel.

Such hierarchical models are especially useful when arithmetic intensity
scales with cache capacity as it does for dense matrix-matrix multiplication.
For such cases we must select a block size that is sufficiently large that the
code will be limited by core performance rather than cache–core or DRAM–
processor bandwidth.

2.7 Summary

The roofline model is a readily accessible performance model intended
to provide performance intuition to computer scientists and computational
scientists alike. Although the roofline proper is a rather loose upper bound to
performance, it may be refined through the use of bandwidth ceilings, in-core
ceilings, arithmetic intensity walls, and hierarchical memory architectures to
provide much tighter performance bounds.

2.8 Acknowledgements

I wish to express my gratitude to Professor David A. Patterson and Andrew
Waterman for their help in creation of this model. This work was supported

30 Performance Tuning of Scientific Applications

by the ASCR Office in the DOE Office of Science under contract number DE-
AC02-05CH11231, Microsoft (Award #024263), Intel (Award #024894), and
by matching funding through U.C. Discovery (Award #DIG07-10227).

2.9 Glossary

Arithmetic Intensity: is a measure of locality. It is calculated as the ratio
of floating-point operations to DRAM traffic in bytes.

Bandwidth: is the average rate at which traffic may be communicated. As
such it is measured as the ratio of total traffic to total time and today is
measured in 109 bytes per second (GB/s).

Ceiling: a performance bound based on the lack of exploitation of an archi-
tectural paradigm.

Communication: is the movement of traffic from a particular memory to a
particular computational element.

Computation: represents local FLOPs performed on the data transfered to
the computational units.

FLOP: a floating-point operation including adds, subtracts, and multiplies,
but often includes divides. It is generally not appropriate to include oper-
ations like square roots, logarithms, exponents or trigonometric functions
as these are typically decomposed into the base floating-point operations.

Kernel: a deterministic computational loop nest that performs floating-point
operations.

Performance: Conceptually similar to bandwidth, performance is a measure
of the average rate computation is performed. As such it is calculated as
the ratio of total computation to total time and today is measured in 109

floating-point operations per second (GFlop/s) on multicore SMPs.

Roofline: The ultimate performance bound based on peak bandwidth, peak
performance, and arithmetic intensity.

Traffic: or communication is the volume of data that must be transfered to or
from a computational element. It is measured in bytes. Often, we assume
each computational element has some cache or internal storage capacity
so that memory references are efficiently filtered to compulsory traffic.

Part V

Automatic Performance
Tuning

31

Chapter 5

Auto-tuning Memory-Intensive
Kernels for Multicore

Samuel W. Williams

Lawrence Berkeley National Laboratory

Kaushik Datta

University of California at Berkeley

Leonid Oliker

Lawrence Berkeley National Laboratory

more authors???

from somewhere??

5.1 Introduction . 34
5.2 Experimental Setup . 35

5.2.1 AMD Opteron 2356 (Barcelona) . 35

5.2.2 Xeon E5345 (Clovertown) . 36

5.2.3 IBM Blue Gene/P (Compute Node) . 36

5.3 Computational Kernels . 37

5.3.1 Laplacian Differential Operator (Stencil) . 37

5.3.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD) 38

5.3.3 Sparse Matrix-Vector Multiplication (SpMV) . 39

5.4 Optimizing Performance . 41

5.4.1 Parallelism . 42
5.4.2 Minimizing Memory Traffic . 42

5.4.3 Maximizing Memory Bandwidth . 45

5.4.4 Maximizing In-core Performance . 46

5.4.5 Interplay between Benefit and Implementation 46

5.5 Automatic Performance Tuning . 46

5.5.1 Code Generation . 47
5.5.2 Auto-tuning Benchmark . 48

5.5.3 Search Strategies . 49

5.6 Results . 50
5.6.1 Laplacian Stencil . 50

5.6.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD) 51

5.6.3 Sparse Matrix-Vector Multiplication (SpMV) . 52

5.7 Summary . 54

5.8 Acknowledgments . 54

33

34 Performance Tuning of Scientific Applications

In this, chapter, we discuss the optimization of three memory-intensive compu-
tational kernels (sparse matrix vector multiplication, the Laplacian differential
operator applied to structured grids, and the collision() operator with the
lattice Boltzmann magnetohydrodynamics (LBMHD) application. They are
all implemented using a single process, (POSIX) threaded, SPMD model. Un-
like their computationally-intense dense linear algebra cousins, performance
is ultimately limited by DRAM memory bandwidth and the volume of data
that must be transfered. To provide performance portability across current
and future multicore architectures, we utilize automatic performance tuning,
or auto-tuning.

The chapter is organized as follows. First, we define the memory-intensive
regime and detail the machines throughout this chapter. Next, we discuss the
three memory-intensive kernels that we auto-tuned. We then proceed with
a discussion of performance optimization and automatic performance tuning.
Finally, we show and discuss the benefits of applying the auto-tuning technique
to three memory-intensive kernels.

5.1 Introduction

Arithmetic Intensity is a particularly valuable metric in predicting the per-
formance of many single program multiple data (SPMD) kernels. It is defined
as the ratio of requisite floating-point operations to total DRAM memory
traffic. Often, on cache-based architectures, one simplifies total DRAM mem-
ory traffic to include just compulsory reads, write allocates, and compulsory
writes.

Memory-intensive computational kernels are characterized by those ker-
nels with arithmetic intensities that are constant or scale slowly with data
size. For example, BLAS-1 operations like a dot product of two N-element
vectors perform 2 ·N floating-point operations, but must transfer 2 ·8N bytes.
This results in an arithmetic intensity (1

8) that does not depend on the size
of the vectors. As this arithmetic intensity is substantially lower than most
machines’ flop:byte ratio, one generally expects such kernels to be memory-
bound for any moderately-large vector size with performance, measured in
floating-point operations per second (GFlop/s), being the product of mem-
ory bandwidth and arithmetic intensity. Even computational kernels whose
arithmetic intensity scales slowly with problem size like out-of-place complex-
complex FFT’s, roughly 0.16 log(n), may be memory-bound for any practical
size of n.

Unfortunately, arithmetic intensity (and thus performance) can be de-
graded if superfluous memory traffic exists (e.g. conflict misses, capacity
misses, speculative traffic, or write allocations. The foremost goal in opti-
mizing memory-intensive kernels is to eliminate as much of this superfluous

Auto-tuning Memory-Intensive Kernels for Multicore 35

Core AMD Intel IBM
Architecture Barcelona Core2 PowerPC 450

superscalar superscalar dual issueType
out-of-order out-of-order in-order

Clock (GHz) 2.3 2.66 0.85
DP Peak (GFlop/s) 9.2 10.7 3.4
Private L1 Data Cache 64 KB 32 KB 32 KB
Private L2 Data Cache 512 KB — —

Opteron 2356 Xeon E5355 Blue Gene/P
Socket Architecture Barcelona Clovertown Compute Chip
Cores per Socket 4 4 (MCM) 4
Shared Cache 2 MB L3 2×4 MB L2 8 MB L2
memory parallelism
paradigm

HW prefetch HW prefetch HW prefetch

Opteron 2356 Xeon E5355 Blue Gene/P
System Architecture Barcelona Clovertown Compute Node
Sockets per SMP 2 2 1
DP Peak (GFlop/s) 73.69 85.33 13.60

21.33(read)DRAM Bandwidth (GB/s) 21.33
10.66(write)

13.60

DP Flop:Byte Ratio 3.45 2.66 1.00

TABLE 5.1: Architectural summary of evaluated platforms.

memory traffic as possible. To that end, we may exploit a number of strategies
that either passively or actively elicit better memory subsystem performance.
Ultimately, when performance is limited by compulsory memory traffic, reor-
ganization of data structures or algorithms is necessary.

5.2 Experimental Setup

In this section, we discuss the three multicore SMP computers used in
this chapter — AMD’s Opteron 2356 (Barcelona), Intel’s Xeon E5345 Clover-
town, and IBM’s Blue Gene/P (used exclusively in SMP mode). As of 2009,
these architecture’s dominate the top500 list of supercomputers. The key fea-
tures of these computers are shown in Table 5.1 and detailed in the following
subsections.

36 Performance Tuning of Scientific Applications

5.2.1 AMD Opteron 2356 (Barcelona)

Although superseded by the more recent Shanghai and Istanbul incarna-
tions, the Opteron 2356 (Barcelona) effectively represents the future x86 core
and system architecture. The machine used in this work is a 2.3 GHz dual-
socket × quad-core SMP. As each superscalar out-of-order core may complete
both a SIMD floating-point add and a SIMD floating-point multiply per cy-
cle, the peak double-precision floating-point performance (assuming balance
between adds and multiplies) is 73.6 GFlop/s. Each core has a private 64 KB
L1 data cache and a private 512 KB L2 victim cache. The four cores on a
socket share a 2 MB L3 cache.

Unlike Intel’s older Xeon’s, the Opteron integrates the memory controllers
on chip and provides an inter-socket network (via Hypertransport) to provide
cache coherency as well as direct access to remote memory. This machine
uses DDR2-667 DIMMs providing a DRAM pin bandwidth of 10.66 GB/s per
socket.

5.2.2 Xeon E5345 (Clovertown)

Providing an interesting comparison to Barcelona, the Xeon E5345
(Clovertown) uses a modern superscalar out-of-order core architecture coupled
with an older frontside bus (FSB) architecture in which two multichip mod-
ules (MCM) are connected with an external memory controller hub (MCH)
via two frontside buses. Although two FSBs allows a higher bus frequency, as
these chips are regimented into a cache coherent SMP, each memory trans-
action on one bus requires the MCH to produce a coherency transaction on
the other. In effect this eliminates the parallelism advantage in having two
FSBs. To rectify this, a snoop filter was instantiated within the MCH to safely
eliminate as much coherency traffic as possible. Regardless, the limited FSB
bandwidth (10.66 GB/s) bottlenecks the substantial DRAM read bandwidth
of 21.33 GB/s.

Each core runs at 2.4 GHz, has a private 32 KB L1 data cache, and like the
Opteron may complete one SIMD floating-point add and one SIMD floating-
point multiply per cycle. Unlike the Opteron, the two cores on a chip share a
4 MB L2 and may only communicate with the other two cores of this nominal
quad-core MCM via the frontside bus.

5.2.3 IBM Blue Gene/P (Compute Node)

IBM’s Blue Gene/P (BGP) takes a radically different approach to ultra-
scale system performance compared to traditional superscalar processors as
it relies more heavily on power efficiency to deliver strength in numbers in-
stead of maximizing performance per node. To that end, the compute node
instantiates four PowerPC 450 embedded cores in its one chip. These cores
are dual-issue, in-order, SIMD enabled cores that run at a mere 850 MHz. As

Auto-tuning Memory-Intensive Kernels for Multicore 37

(a)
PDE grid

+Y

+Z

+X

(b)
stencil for heat equation PDE

(c)
inner loop

Next[x,y,z] =
 C0 * Current[x,y,z] +
 C1 *(
 Current[x+1,y,z] +
 Current[x-1,y,z] +
 Current[x,y+1,z] +
 Current[x,y-1,z] +
 Current[x,y,z+1] +
 Current[x,y,z-1]
);

y+1

y-1

x-1

z-1

z+1

x+1
x,y,z

FIGURE 5.1: Visualization of the data structures associated with the heat
equation stencil. (a) the 3D temperature grid. (b) the stencil operator per-
formed at each point in the grid. (c) pseudocode for stencil operator.

such, each node’s peak performance is only 13.6 GFlop/s — a far cry from
the x86 superscalar performance. However, the order of magnitude reduction
in node power results in superior power efficiency.

Each of the four cores on a BGP compute chip has a highly associative
32 KB L1 data cache, and they collectively share an 8 MB L3. As it is a single
chip solution, cache-coherency is substantially simpler as all snoops and probes
are on chip. The chip has two 128-bit DDR2-425 DRAM channels providing
13.6 GB/s of bandwidth to a mere 4 GB of DRAM capacity. Like Opterons
and Xeons, Blue Gene/P has hardware prefetch capabilities.

5.3 Computational Kernels

In this section, we introduce the three memory-intensive kernels used
throughout the rest of the chapter: the Laplacian stencil, the collision()–
stream() operators extracted from Lattice Boltzmann Magnetohydrodynam-
ics (LBMHD), and sparse matrix-vector multiplication (SpMV).

5.3.1 Laplacian Differential Operator (Stencil)

Partial differential equation (PDE) solvers constitute a large fraction of
scientific applications in such diverse areas as heat diffusion, electromagnetics,
and fluid dynamics. Solutions to these problems are often implemented using
an explicit method via iterative finite-difference techniques that sweep over a
spatial grid performing linear combinations of a point’s nearest neighbor in
a computation called a stencil. As such, our first kernel is the quintessential
finite difference operator found in many partial difference equations — the
7-point Laplacian stencil.

This kernel is implemented as out-of-place Laplacian stencil and is visu-
alized by Figure 5.1. As this uses Jacobi’s method, we maintain a copy of

38 Performance Tuning of Scientific Applications

the grid for both the current and next time steps and thereby avoid any data
hazards. Conceptually, the stencil operator in Figure 5.1(b) is simultaneously
applied to every point in the 2563 scalar grid shown in Figure 5.1(a). This
method allows an implementation to select any traversal of the points.

This kernel is exemplified by an interesting memory access pattern with 7
reads and one write presented to the cache hierarchy. However, there is possi-
bility of 6-fold reuse of the read data. Unfortunately this requires substantial
cache capacity. Much of the auto-tuning effort for this kernel is aimed at elic-
iting this ideal cache utilization through the elimination of cache capacity
misses. Secondary efforts are geared toward the elimination of conflict misses
and write allocation traffic. Thus, with appropriate optimization, memory
bandwidth and compulsory memory traffic provide the ultimate performance
impediment. To that end, in-core performance must be improved trough var-
ious techniques only to the point where it is not the bottleneck. For further
details on the heat equation and auto-tuning approaches, we direct the reader
to [?].

5.3.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD)

The second kernel examined in this chapter is the inner loop from the Lat-
tice Boltzmann Magnetohydrodynamics (LBMHD) application [?]. LBMHD
was developed to study homogeneous isotropic turbulence in dissipative mag-
netohydrodynamics (MHD) — the theory pertaining to the macroscopic be-
havior of electrically conducting fluids interacting with a magnetic field. The
study of MHD turbulence is important in the physics of stellar phenomena,
accretion discs, interstellar and intergalactic media, and plasma instabilities
in magnetic fusion devices [?].

In Lattice methods, the macroscopic quantities (like density or momentum)
at each point in space are reconstructed through operations on a momentum
lattice — a discretization of momentum along 27 vectors. As LBMHD cou-
ples computational fluid dynamics with Maxwell’s equations, the momentum
lattice is augmented with a 15 velocity (cartesian vectors) magnetic lattice as
shown in Figure 5.2. Clearly, this creates very high memory capacity require-
ments — over 1 KB per point in space.

LBM methods iterate through time calling two functions per time step: a
collision() operator, where the grid is evolved one timestep, and a stream()
operator that exchanges data with neighboring processors. In a shared mem-
ory, threaded implementation, stream() degenerates into a function designed
to maintain periodic boundary conditions.

In serial implementations, collision() typically dominates the run time.
To ensure that an auto-tuned collision() continues to domainate runtime
in a threaded environment, we also thread-parallelize stream(). We restrict
our exploration to a 1283 problem on the x86 architectures, but only 643

on BlueGene as it lacks sufficient DRAM. For further details on LBMHD

Auto-tuning Memory-Intensive Kernels for Multicore 39

(b)
momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15

+Z

+X

(c)
magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

(a)
macroscopic variables

+Y

+Z

+X

(d)
data structure

struct{
 // macroscopic quantities
 double * Density;
 double * Momentum[3];
 double * Magnetic[3];
 // distributions
 double * MomentumDist[27];
 double * MagneticDist[3][27];
}

FIGURE 5.2: Visualization of the datastructures associated with LBMHD.
(a) the 3D macroscopic grid. (b) the D3Q27 momentum scalar velocities. (c)
D3Q15 magnetic vector velocities. (d) C structure of arrays datastructure.
Note, each pointer refers to a N3 grid, and X is the unit stride dimension.

and previous auto-tuning approaches, we direct the reader to the following
papers [?,?].

The collision() code is far too complex to duplicate here. Superficially,
the collision() operator must read the lattice velocities from the current
time step, reconstruct the macroscopic quantities of momentum, magnetic
field, and density, and create the lattice velocities for the next time step.
When distilled, this involves reading 73 doubles, performing 1300 floating
point operations, and writing 79 doubles per lattice update. This results in a
compulsory-limited arithmetic intensity of about 0.7 on write allocate archi-
tectures, but may be improved to about 1.07 through the use of cache bypass
instructions.

Conceptually, the collision() operator within LBMHD is comprises both
a 15 and a 27 point stencil similar to the previously discussed Laplacian Sten-
cil. However, as lattice methods utilize an auxiliary grid which store a dis-
tribution of velocities at each point, these stencil operators are different in
that they reference a different velocity from each neighbor. As such, there
is no inter-lattice update reuse. Proper selection of data layout (structure-
of-arrays) transformed the principal problem challenge from cache blocking
to TLB blocking. When coupled with a code transformation, one may reap
the benefits of good cache and TLB locality simultaneously with effective
SIMDization.

As this application was designed for a weak-scaled MPI SPMD environ-
ment, we may simply tune to optimize single node performance, then integrate
the resultant optimized implementation back into the MPI version.

5.3.3 Sparse Matrix-Vector Multiplication (SpMV)

Sparse Matrix Vector Multiplication (SpMV) dominates the performance
of diverse applications in scientific and engineering computing, economic mod-
eling and information retrieval; yet, conventional implementations have his-
torically performed poorly on single-core cache-based microprocessor sys-

40 Performance Tuning of Scientific Applications

(a)
algebra conceptualization

(c)
CSR reference code

for (r=0; r<A.rows; r++) {
 double y0 = 0.0;
 for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){
 y0 += A.val[i] * x[A.col[i]];
 }
 y[r] = y0;
}

A x y

(b)
CSR data structure

A.val[]

A.rowStart[]

...

...

A.col[]
...

FIGURE 5.3: Sparse Matrix Vector Multiplication (SpMV). (a) visualization
of the algebra: y ← Ax, where A is a sparse matrix. (b) Standard compressed
sparse row (CSR) representation of the matrix. This structure of arrays imple-
mentation is favored on most architectures. (c) The standard implementation
of SpMV for a matrix stored in CSR. The outer loop is trivially parallelized
without any data dependencies.

tems [10]. Compared to dense linear algebra kernels, sparse kernels like SpMV
suffer from high instruction and storage overhead per floating-point opera-
tions, and a lack of instruction- and data-level parallelism in the reference
implementations. Even worse, unlike the implicit (arithmetic) addressing pos-
sible in dense linear algebra and structured grid calculations (stencils and
lattice methods), indexing neighboring points in a sparse matrix requires an
indirect access. This can result in potentially irregular memory access pat-
terns (jumps and discontinuities). As such, achieving good performance on
these kernels often requires selection of a compact data structure, reorder-
ing of the computations to favor regular memory access patterns, and code
transformations based on runtime knowledge of the sparse matrix. This need
for run-time optimization and tuning is a major distinction from most other
computational methods.

In this chapter, we consider the Sparse Matrix-Vector Multiplication
(SpMV) operation y ← Ax, where A is a sparse matrix, and x, y are dense vec-
tors. A sparse matrix is a special case of the matrices found in linear algebra
in which most of the matrix entries are zero. In a matrix-vector multiplication,
computation on zeros does not change the result. As such, they may be el-
liminated from both the representation and the computation leaving only the
nonzeros. Although the most common data structure used to store a sparse
matrix for SpMV-heavy computations is compressed sparse row (CSR) for-
mat, illustrated with the corresponding kernel in Figure 5.3, we will explore
alternate representations of the compute kernel. CSR requires a minimum
overhead of 4 bytes (column index) per 8 byte nonzero. As microprocessors
only have sufficient cache capacity to cache the vectors in their entirety, we
may define the compulsory memory traffic as 12 bytes per nonzero. SpMV
will perform 2 flops per nonzero. As such, the ideal CSR arithmetic is only
0.166 flops per byte; making SpMV heavily memory-bound. Capacity misses
and sub-optimial bandwidth will substantially impair performance.

Auto-tuning Memory-Intensive Kernels for Multicore 41

Dense
 Protein
 Spheres
 Cantilever

Wind

Tunnel
 Harbor
 QCD

Rows

Columns

2K

2K

36K

36K

83K

83K

62K

62K

218K

218K

47K

47K

49K

49K

nonzeros (NNZ)
 4.0M
 4.3M
 6.0M
 4.0M
 11.6M
 2.4M
 1.9M

Spyplot

(Sparsity)

Ship
 Economics

Epidem-

iology
 Accelerator
 Circuit
 webbase
 LP

Spyplot

(Sparsity)

141K

141K

207K

207K

526K

526K

121K

121K

171K

171K

1M

1M

4K

1M

4.0M
 1.3M
 2.1M
 2.6M
 0.9M
 3.1M
 11.3M

Rows

Columns

nonzeros (NNZ)

FIGURE 5.4: Benchmark matrices used as inputs to our auto-tuned SpMV
library framework.

Unlike most of dense linear algebra, stencils on structured grids, and
Fourier transforms, where the problems are often characterized by a few inte-
gers representing the dimensions of the input, matrices used in sparse linear
algebra are not only characterized by their dimensions but also by their spar-
sity pattern — a scatter plot of nonzeros. Figure 5.4 presents the spyplot
and the key characteristics associated with each matrix used in this chapter.
Observe that for the most part, the vectors are small, but the matrices (in
terms of nonzeros) are large. Remember, 12 bytes are required per nonzero.
As such, a matrix with four million nonzeros requires at least 32 MB of stor-
age — far larger than most caches. We selected a set of matrices that would
exhibit several classes of sparsity: dense, low bandwidth (principally FEM),
unstructured, and extreme aspect ratio. Such matrices will see differing cache
capacity issues on multicore SMPs. In addition, we ensured the matrices would
run the gambit of nonzeros per row — a key component in CSR performance.
Finally, although some matrices are symmetric, we convert all of them to
non-symmetric format and do not exploit this characteristic.

For further details on the sparse matrix-vector multiplication and previous
auto-tuning efforts, we direct the reader to [?,?].

42 Performance Tuning of Scientific Applications

5.4 Optimizing Performance

Broadly speaking, we may either classify optimizations by their impact on
implementation and usage, or by the performance bottleneck they attempt to
eliminate. For example, an implementation-based categorization may delineate
optimizations into four groups based on what changes are required: only code
structure, data structures, the style of parallelism, or algorithms. On the other
hand, if we categorize optimizations by bottleneck, we may create groups
that: more efficiently exploit parallelism, minimize memory traffic, maximize
memory bandwidth, or maximize in-core performance. That being said, in
this section, we describe the optimizations employed by our three auto-tuners
grouped by the bottleneck-oriented taxonomy. Moreover, as we’re focused on
memory-intensive kernels, we will prioritize the optimizations accordingly.

5.4.1 Parallelism

Broadly speaking parallelism encompasses approaches to synchronization,
communication, use of threads or processes, and problem decomposition.

Synchronization and Communication: Although a number of alter-
nate strategies are possible (including DAG-based schedulers ??), we adopted
a POSIX thread-based, SPMD, bulk-synchronous approach to exploiting mul-
ticore parallelism. Unlike process-based, shared memory-optimized message
passing approaches, we exploit the ever-present cache coherency mechanisms
for both efficient communication as well as to eliminate system calls. We en-
force bulk synchronous semantics via a shared memory spin barrier.

Problem Decomposition: We utilize two different approaches to prob-
lem decomposition. First, the structured grid codes spatially decompose the
stencil sweep into subdomains by partitioning the problem in two dimensions
(not the unit stride). We ensure there are at least as many subdomains as there
are there are threads. Subdomains may then be assigned to threads in chunks
in a round-robin ordering. For LBMHD, the subdomains are not perfect rec-
tahedral volumes. Rather, within each plane the boundaries are aligned to
cache lines. In effect this performs only loop parallelization through blocking.
No part of the data structure is changed.

Conversely, we apply a very different technique when parallelizing sparse
matrix-vector multiplication. To ensure there are no data dependencies, we
only parallelized by rows, creating submatrices each of which contain roughly
the same number of nonzeros, but may span wildly different numbers of rows.
Each of these submatrices is stored separately as if it were its own matrix.
We may now individually optimize each submatrix including uniquely register
blocking each. Clearly, SpMV went well beyond simple loop parallelization and
subsumes data structure transformations as well.

Auto-tuning Memory-Intensive Kernels for Multicore 43

5.4.2 Minimizing Memory Traffic

When a kernel is memory-bound, there are two principal optimizations:
reduce the volume of memory traffic or increase the attained memory band-
width. For simple memory access patterns, modern superscalar processors
often achieve a high fraction of memory bandwidth. As such, our primary
focus should be on techniques that minimize the volume of memory traffic.
Broadly speaking, we may classify memory traffic using the Three C’s ??
cache model’s compulsory, conflict, and capacity misses augmented with spec-
ulative (prefetch) and write allocate traffic. We implemented a set of opti-
mizations that attempt to minimize each class of traffic. Not all optimizations
are applicable to all kernels.

Array Padding: Caches have limited associativity. When too many mem-
ory references map to the same set in the cache, a conflict miss will occur and
useful data will be evicted. These conflicts may arise from intra-thread con-
flicts or, when shared caches are in play, from inter-thread conflicts. Due to
the limited number of memory streams and reuse, inter-thread conflict misses
predominate on SpMV and the Laplacian stencil. On LBMHD, where the
collision() operator attempts to keep elements from 150 different arrays in
the cache, eliminating intra-thread conflict misses is key. As such, we imple-
mented two different strategies to mitigate cache conflict misses. For SpMV
and stencils, we pad each array so that the address of the first element maps
to a unique set in the cache. Moreover, the padding is selected to ensure that
the set addresses of the threads’ first elements are equally spaced (by set
address) in the last level cache. The ideal padding may be either calculated
arithmetically or obtained experimentally. For SpMV, we simply malloc each
thread block independently with enough space to pad by the cache size. We
then align to a 4 MB boundary and pad by the thread’s fraction of the cache.
Array padding for LBMHD is somewhat more complex. We pad each veloc-
ity’s array so that when referenced with the corresponding stencil offset (and
corresponding address offset) the resultant physical address maps to a unique,
equally-spaced cache set. Although this sounds complicated in practice, its rel-
atively easy to implement. For the details of how these kernels exploit array
padding, we direct the reader to ???

Cache Blocking: The reference implementations of many kernels main-
tain substantial cache working sets. In practice, processor architects cannot
implement caches that are large enough to avoid capacity misses adding to the
volume of memory traffic. LBMHD does not exhibit any inter-stencil reuse.
That is, there is no two stencils reuse the same values. As such, cache capac-
ity misses are nonexistent. However, the Laplacian stencil shows substantial
reuse. Like dense matrix-vector multiplication, SpMV will also show reuse on
vector accesses. In either case, we must restructure code, and possibly data, to
eliminate capacity miss traffic. Like cache blocking in dense linear algebra, we
may apply a simple loop blocking technique to the Laplacian stencil to ensure
an implementation generates relatively few capacity misses. In practice, this is

44 Performance Tuning of Scientific Applications

implemented the same as problem decomposition for parallelization. However,
defining dense blocks (of source vectors) for SpMV often yields a dramatically
suboptimal solution. As such, we employ a novel sparse blocking technique
that ensures that each cache block touches the same number of cache lines
regardless of how many rows or columns the block spans. In practice, for a
given thread’s block of the matrix, we cache block it by simply adding columns
of the sparse matrix until the number of unique cache lines touched reaches a
preset number. Clearly, this requires substantial data structure changes.

Cache Bypass: Based on consumer applications, most cache architectures
implement a write allocate protocol. That is, if a store (write) misses in the
cache, an existing line will be selected for eviction, the target line will be loaded
into the cache, and the target word will be written to the line in the cache.
Such an approach is based on the implicit assumption that if data is written, it
will be promptly read and modified many times. Note, usage of such a policy
is orthogonal to the write-back or write-through choice. Unfortunately, many
computational kernels found in HPC read and write to separate arrays or
data structures. As such, most writes allocate a line in the cache, completely
obliterate its previous contents, and eventually write it back to DRAM. This
makes write allocate not only superfluous, but expensive as it will generate
twice the memory traffic as a read — an obvious target for optimization when
memory-bound.

Modern write-allocate cache architectures provide a means of eliminating
this superfluous memory traffic via a special store instruction that bypasses
the cache hierarchy. In the x86 ISA, this is implemented with the movntpd in-
struction. Unfortunately, most compilers cannot resolve the complex decision
as to when to use this instruction; improper usage can reduce performance by
an order of magnitude, where correct usage can improve performance by 50%.
As such, in practice, we may only exploit this functionality through the use
of SIMD intrinsics — a language construct with the interface of a function
that the compiler will map directly to one instruction.

Often, the vectors used in SpMV are small enough to fit in cache. As
such, the totality of DRAM memory traffic is reads and there is no need
to use cache bypass. However, Jacobi stencils and lattice methods read and
write to separate arrays. For other finite-difference operators like gradient
or divergence, cache bypass may only improve performance by 75% or 25%
respectively. Given this variability in benefit and the human effort required to
implement this optimization, one should analyze the code before proceeding
with this optimization. Nevertheless, usage of cache bypass on the Laplacian
stencil or LBMHD can reduce the total memory traffic by 33% and improve
performance by 50%.

Register blocking for SpMV: For most matrices, SpMV is dominated
by compulsory misses. As such, neither cache blocking nor cache bypass will
provide substantial benefits. That is not to say nothing can be done. Rather, a
radical solution has emerged that eliminates compulsory miss traffic. Broadly
speaking, sparse matrices require substantial meta data per nonzero — per-

Auto-tuning Memory-Intensive Kernels for Multicore 45

haps a 50% overhead. However, we observe that many nonzeros are clustered
in relatively small regions. As such, the optimization known as register block-
ing reorganizes the sparse matrix of nonzeros into a sparse matrix of small
R×C dense matrices. Meta data is now needed only for each register block
rather than each nonzero. If the zero fill required to make those R×C register
blocks dense is less than the reduction in meta data, then the total memory
traffic has been reduced — a clear win for a memory-bound kernel. Similarly,
we may note that a range of column or row indices can be represented by a
16-bit integer instead of a 32-bit integer. This can save 2 bytes (or 17%) per
nonzero. Please note, the term register blocking, when applied to sparse linear
algebra refers to a hierarchical restructuring of the data, but when applied to
dense linear algebra refers to a unroll and jam technique. In this chapter, our
SpMV code heuristically explores these matrix compression techniques to find
the combination that minimizes the matrix footprint.

5.4.3 Maximizing Memory Bandwidth

Now that we’ve discussed optimizations designed to minimize the volume
of memory traffic, we may examine optimizations that maximize the rate at
which said volume of data can be streamed into the processor. Basically, these
optimizations aim to either avoiding memory latency or hide memory latency..

TLB Blocking: All modern microprocessors use virtual memory. To
translate the virtual address produced by the program’s execution into the
physical address required to access the cache or DRAM, the processor must
inspect the page table to determine the mapping. As this is a slow process
and page table entries rarely change, page table entries may be placed in a
very fast, specialized cache on chip — the translation lookaside buffer or TLB.
Unfortunately, TLBs are small and thus may not be able to cache all the pages
referenced by an application (regardless of page size). As such, it is possible
to generate TLB capacity misses. These typically don’t generate superfluous
DRAM traffic like normal cache capacity misses because evicted page table
entries may land in the L2 or L3 cache. The performance difference (resulting
from an increase in average memory latency) between translations that hit
in the TLB and those that hit in the L3 is substantial. We may recast the
cache blocking technique (which eliminated cache capacity misses) to elimi-
nate TLB capacity misses and avoid memory latency. In LBMHD, we used
a loop interchange technique coupled with an auxiliary data structure. This
allowed us to trade cache capacity for increased page locality (and reduced
TLB capacity misses). This technique is detailed in ??? .

Prefetching: Memory latency is high. To satisfy Little’s Law???
and maximize memory bandwidth, the processor must express substantial
memory-level parallelism. Unfortunately, superscalar execution may be insuf-
ficient. As such, hardware designers have incorporated both hardware and
software prefetching techniques into their processors. The goal for either is to
hide memory latency. A software prefetch is an instruction like a load without

46 Performance Tuning of Scientific Applications

a target address. As such, the processor will not stall waiting for it to complete.
The user simply prefetches one element from each cache line to initiate the
entire line’s load. Unfortunately, such a practice requires the programmer to
tune for the optimal “prefetch distance” — how far ahead prefetch addresses
should be from load addresses. If he aims too low, latency will not be com-
pletely hidden. If he aims too high, cache capacity will be exhausted. More
recently, a hardware prefetchers have begun to supplant software prefetching.
Typically, they detect a series of cache misses, speculate as to future addresses,
and prefetch them into the cache without requiring any user interaction.

In this chapter, we structure our auto-tuned codes to synergize with hard-
ware prefetchers (long unit-stride accesses) but supplement this with software
prefetching. This general approach provides performance portability as we
make no assumptions as to whether a processor implements software prefetch-
ing, hardware prefetching, or both.

5.4.4 Maximizing In-core Performance

For memory-intensive computations our primary focus should be on min-
imizing memory traffic and maximizing memory bandwidth. However, it is
important not to overlook in-core(cache) performance. Code written without
thought to the forms of parallelism required to attain good in-core performance
may actually be compute-bound rather than memory-bound. The most com-
mon techniques are unroll and jam, permuting or reordering the computation
given an unrolling, and SIMDization. We explored all of these via auto-tuning
on all three kernels.

5.4.5 Interplay between Benefit and Implementation

The bottleneck that an optimization attempts to alleviate is orthogonal
to the scope of the software implementation effort that is required to achieve
it. For example, Table 5.2 lists the optimizations used when auto-tuning our
three memory-intensive kernels. Loop or code structure transformations have
perennially been the only changes allowed by an auto-tuner as they preserve
the input and output semantics. Nevertheless, we see many optimizations
require an abrogation of this convention as changes to data structures are
required for ideal performance.

5.5 Automatic Performance Tuning

Given this diversity of computer architectures, performance optimization
has become a challenge as optimizing an application for one microarchitecture

Auto-tuning Memory-Intensive Kernels for Multicore 47

Loop/Code Data Style of
Optimization Structure Structure Parallelism

BS SPMD (pthreads) X
Decomposition (loop-based) X

(hierarchical) X
Array Padding X

Cache Blocking (loop-based) X
(sparse) X

Cache Bypass (movntpd) X
Reg. Blocking (sparse) X
TLB Blocking (loop-based) X

(sparse) X
Prefetching (software) X

Unroll and Jam X
Reordering X

SIMDization X †

TABLE 5.2: Interplay between the bottleneck each optimization addresses
(parallelism, memory traffic, memory bandwidth, in-core performance) and
the impact on implementation (code-only, data structures, styles of paral-
lelism). Obviously, changing data or parallelism structure will mandate some
code changes. †Efficient SIMD requires data structures be aligned to 128-byte
boundaries.

may result in a substantial performance loss on another. When coupled with
the demands to optimize performance in a shorter timeframe than architec-
tural evolution (several new variants of the x86 processor lines appear every
year), hand optimizing for each is not practical. To that end, automatic per-
formance tuning, or auto-tuning has emerged as an productive approach to
tune key computational kernels and even full applications in minutes instead
of monthsATLAS, FFTW, OSKI??? . In essence, auto-tuning is built on
the premise that if one can enumerate all possible implementations of a kernel,
the performance of modern computers allows for the exploration of these vari-
ants in less time than a human would require to optimize for one. Moreover,
once this auto-tuner has been constructed it can be reused on any evolution
of these architectures. The best choice or parameterization for the optimiza-
tions may be either architecture-dependent, input-dependent, or both. If it is
neither, simple optimization will suffice, and auto-tuning is not needed.

Typically, auto-tuning a kernel is divided into three phases: enumeration
of potentially valuable optimizations, implementation of a code generator to
produce functionally equivalent implementations of said kernel using different
combinations of the enumerated optimization space, and implementation of
a search component that will benchmark these variants (perhaps using real
problem data) in an attempt to find the fastest possible implementation. We
may visualize the auto-tuning flow in FIgure 5.5, and will discuss the principal
components in the following sections.

48 Performance Tuning of Scientific Applications

Reference
Implementation

Myriad of equivalent,
optimized, implementations
of key computational kernel

.c

Best performing
implementation

and configuration
parameters

.c

S
ea

rc
h

B
en

ch
m

ar
k

.c

Computer Scientist
enumerates potential
optimizations, and
then creates a Perl

script and supporting
routines

.c .c

Portable C SSE 450d

.c

.h

Perl Code
Generators

Double
Hummer

SSE

Portable C

FIGURE 5.5: Generic visualization of the auto-tuning flow.

5.5.1 Code Generation

For purposes of this chapter, we use a simple auto-tuning methodology
in which we use a Perl script to generate a few hundred potentially viable
parameterizable implementations of a particular kernel. An implementation
is a unique code representation that may be parameterized with a run time
configuration. For example, cache blocking transforms a näıve three nested
loop implementation of matrix-matrix multiplication into a six nested loop
implementation that is parameterized at runtime with the sizes of the cache
blocks (the range of the inner loops). This is still just one variant. However,
when one register blocks matrix multiplication, the inner 6 nested loops are
so small (less than 16) it is common to simply fully unroll all loops and create
perhaps a few thousand different code variants. When combined with cache
blocking, we may have hundreds of individually parameterizable code variants.

Code variants are also needed when dealing with different data structures
(i.e. hierarchical instead of flat), styles of parallelism (dataflow instead of bulk
synchronous), or even algorithms. Each of these may in turn be parameterized.

As the differences between clusters of code variants may easily be expressed
algorithmically, the Perl scripting language provides a pragmatic and produc-
tive means of tackling the intellectually-uninspiring task of producing the tens
of thousands of lines of code. In essence, the simplest Perl code generation tech-
niques are nothing more than a for loop over a series of printf’s. Every line
in the resultant C code (function declarations, variables, statements, etc...)
maps to a corresponding printf in the Perl script.

5.5.2 Auto-tuning Benchmark

A Perl script may generate thousands of code variants. Rather than trying
to compile an auto-tuning benchmark for each, we integrate and compile all of
them into one auto-tuning benchmark. This creates the challenge of selecting
the appropriate variant without substantial overhead. To that end, we create
an N-dimensional pointer-to-function table indexed by the code variants and
possible parameters.

For example, in SpMV we use a 3-Dimensional table indexed by kernel

Auto-tuning Memory-Intensive Kernels for Multicore 49

table lookup variable:

void (*kernel[MaxF][MaxR][MaxC])(SparseMatrix *, …){
 { // csr sub array

 { &BCSR_1x1, &BCSR_1x2, &BCSR_1x3, &BCSR_1x4 },
 { &BCSR_2x1, &BCSR_2x2, &BCSR_2x3, &BCSR_2x4 },

 { &BCSR_3x1, &BCSR_3x2, &BCSR_3x3, &BCSR_3x4 },
 { &BCSR_4x1, &BCSR_4x2, &BCSR_4x3, &BCSR_4x4 }
 },

 { // coo sub array
 { &BCOO_1x1, &BCOO_1x2, &BCOO_1x3, &BCOO_1x4 },

 { &BCOO_2x1, &BCOO_2x2, &BCOO_2x3, &BCOO_2x4 },
 { &BCOO_3x1, &BCOO_3x2, &BCOO_3x3, &BCOO_3x4 },
 { &BCOO_4x1, &BCOO_4x2, &BCOO_4x3, &BCOO_4x4 }

 }
};

void BCSR_1x1(…){…}

void BCOO_4x4(…){…}

.

.

.

void BCSR_2x1(…){…}

void BCSR_3x1(…){…}

void BCSR_4x1(…){…}

computational kernels:

Perl script
generates code
for each variant

then it creates a
lookup table for

fast benchmarking

1

2

FIGURE 5.6: Using a pointer-to-function table to accelerate auto-tuning
search.

type (BCSR, BCOO, etc...) and the register block sizes as measured in rows
and columns. As shown in Figure 5.6, the Perl script first generates the code
for each kernel variant. In addition, it creates a pointer-to-function table that
provides a very fast means of executing any kernel. During execution, one sim-
ply calls kernel[BCSR][4-1][3-1](...) to execute the 4×3 BCSR kernel.
The auto-tuning benchmark can be constructed to sweep through all possible
formats and register blockings (nested for loops). For each combination, the
matrix is reformatted and blocked, and the SpMV is benchmarked through
a simple function call via the table lookup. This provides a substantial tun-
ing time advantage over the näıveapproach of compiling and executing one
benchmark for every possible combination. Moreover, it provides a fast run-
time solution as well as easy library integration. We’ve demonstrated this
technique when auto-tuning dense linear algebra, sparse linear algebra, sten-
cils, and lattice methods.

5.5.3 Search Strategies

Given an auto-tuning benchmark, we must select a traversal of the
optimization–parameter space that finds good performance quickly. Over the
years, a number of strategies have emerged. In this chapter, we employ three
different auto-tuning strategies: exhaustive, greedy, and heuristic. When the
optimization–parameter space was small, an exhaustive search implemented as
a series of nested loops was acceptably fast. However, in recent years we’ve ob-
served a combinatoric explosion in the size of the space. As a result, exhaustive
search is no longer time- and resource-efficient. As a result, a number of new
strategies have emerged designed to efficiently search the space?? . Greedy

50 Performance Tuning of Scientific Applications

algorithms assume ??? . As such, they may transform a ND optimization–
parameter space of D optimizations each of N possible parameters into a se-
quential search through D optimizations each of N parameters (N×D points).
Often, with substantial architectural intuition, we may express the best (or
very close to best) combination in O(1) time through an arithmetic approach
that combines machine parameters and kernel characteristics.

Due to the size of the search space for the Laplacian Stencil, we were
forced to perform a greedy search algorithm after ordering the optimizations
with some architectural intuition. This reduced the predicted tuning time
from three months to 10 minutes. Conversely, LBMHD almost essentially uses
an exhaustive strategy across seven code variants each of which could accept
over one hundred different parameter combinations. Typical tuning time was
less than 30 minutes. SpMV used a combination of heuristics and exhaustive
search. The none/cache/TLB blocking variant space was search exhaustively.
That is, we benchmarked performance not blocking for either the cache or
TLB, blocking for just the cache, and blocking for both the cache and TLB.
Unlike the typical dense approach, the parameterization for cache and TLB
blocking was obtained heuristically. Similarly, unlike the OSKI?? approach,
the register blocking was obtained heuristically by examining the resultant
memory footprint size for each power-of-two register blocking. However, like
LBMHD, the prefetch distance was obtained through an exhaustive search.

5.6 Results

In this section, we present and discuss the results from the application
of three different custom auto-tuners to the three benchmarks used in this
chapter. Previous papers have performed a detailed performance analysis for
these three kernelsSC08,IPDPS08,SC07

5.6.1 Laplacian Stencil

Figure 5.7 shows the benefits of auto-tuning the 7-point Laplacian stencil
on a 2563 grid on our three computers as a function of thread concurrency
and increasing optimization. Threads are ordered to fully exploit all the cores
within a socket before utilizing the second socket. We have condensed all
optimizations into two categories: those that may be expressed in a portable
C manner, and those that are ISA-specific. The former is a common code
base that may be used on any cache-based architecture, not just these three.
The latter includes optimizations like explicit SIMDization, and cache bypass.
Thus Barcelona and Clovertown use the same x86 ISA-specific auto-tuner,
and BlueGene/P uses a different one. The auto-tuning search strategy uses a

Auto-tuning Memory-Intensive Kernels for Multicore 51

Opteron 2356
(Barcelona)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

(single socket) 2P

Cores

G
F
lo

p
/

s

Xeon X5355
(Clovertown)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 4 8

(single socket) 2P

Cores

G
F
lo

p
/

s

BlueGene/P

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 4

(single socket)

Cores

G
F
lo
p
/
s

Reference Auto-tuned (portable C) Auto-tuned (ISA specific)

FIGURE 5.7: Benefits of auto-tuning the 7-point Laplacian Stencil.

problem size-aware, greedy search algorithm in which the optimizations are
searched one a time for the best parameterizations.

Clearly, the reference implementation delivers substantially suboptimal
performance. As expected on the bandwidth-starved x86 processors, we see
the reference implementation shows no scalability as one core may come close
to fully saturating the available memory bandwidth.

When the portable C auto-tuner is applied to this kernel, we see that opti-
mizations like cache blocking dramatically reduce superfluous memory traffic
allowing substantially better performance. In general, on the x86 processors,
we see a saturation of performance at around 4 cores (one socket), but a jump
in performance at 8 cores as using the second socket doubles the useable mem-
ory bandwidth. However, on NUMA architectures, like Barcelona, this boost
is only possible if data is allocated in a NUMA-aware manner.

Rather than hoping the compiler, the non-portable, ISA-specific auto-tuner
explicitly SIMDizes the kernel via intrinsics. Unfortunately, this is only useful
on compute-bound platforms like Blue Gene. Unfortunately, despite the sim-
plicity of this kernel, the lack of unaligned SIMD loads in the ISA results in less
than perfect (2×) scaling. Although explicit SIMDization was not beneficial
on the x86 architectures, a different ISA-specific optimization, cache bypass,
was useful as it reduces the memory-traffic on a memory-bound kernel. Do-
ing so can substantially improve performance. Unfortunately, compilers will
likely never be able to determine when this instruction is useful as it requires
run-time knowledge.

In the end, auto-tuning improved the performance at full concurrency by
6.1×, 1.9×, and 4.5×, for Barcelona, Clovertown, and Blue Gene/P respec-
tively. Moreover, thread-parallelizing and auto-tuning the 7-point stencil im-
proved performance by 6.8×, 2.3×, and 17.8×, for Barcelona, Clovertown,
and Blue Gene/P respectively. Although substantial effort was required in
implementing a x86-specific auto-tuner, it may be reused on all subsequent
x86 architectures thus amortizing the up front productivity cost.

52 Performance Tuning of Scientific Applications

Opteron 2356
(Barcelona)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 4 8

(single socket) 2P

Cores

G
F
lo

p
/

s

Xeon X5355
(Clovertown)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

(single socket) 2P

Cores

G
F
lo

p
/

s

BlueGene/P

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1 2 4

(single socket)

Cores

G
F
lo
p
/
s

Reference Auto-tuned (portable C) Auto-tuned (ISA specific)

FIGURE 5.8: Benefits of auto-tuning the lattice Boltzmann Magnetohydro-
dynamics (LBMHD) application.

5.6.2 Lattice Boltzmann Magnetohydrodynamics (LBMHD)

Figure 5.8 shows the benefits of auto-tuning LBMHD on our three comput-
ers as a function of thread concurrency and increasing optimization. Unfor-
tunately, Blue Gene/P does not have enough DRAM to simulate the desired
1283 problem. As such, it only simulates a 643 problem. Once again, we have
condensed all optimizations into two categories: those that may be expressed
in a portable C manner, and those that are ISA-specific. The auto-tuning
search strategy is exhaustive although vectorization is quantized into cache
lines.

Although the reference implementation delivers good scalability, simple
performance modeling using the Roofline Model ?? suggests it was delivering
substantially suboptimal performance. Such a model also explains why even
after auto-tuning the bandwidth-starved Clovertown shows poor scalability
despite the performance boosts.

The biggest boosts derived from the portable C auto-tuner are NUMA-
aware allocation, lattice-aware array padding, and vectorization (to eliminate
TLB capacity misses). The Opteron and Blue Gene/P, with moderate machine
balance (flops:bandwidth), see good scaling on this kernel. Conversely, Clover-
town, with a high machine balance, sees poor multicore scalability. Whether
compute-bound or memory-bound, the non-portable, ISA-specific auto-tuner
provided tremendous performance boosts either through explicit SIMDization
or cache bypass.

In the end, auto-tuning improved the full concurrency performance by
3.9×, 1.6×, and 2.4×, for Barcelona, Clovertown, and Blue Gene/P re-
spectively. Moreover, the coupling of thread-parallelization and auto-tuning
improved LBMHD performance by an impressive 28.3×, 8.9×, and 9.2×,
for Barcelona, Clovertown, and Blue Gene/P respectively. Clearly, the ISA-
specific auto-tuners were critical in achieving these speedups.

Auto-tuning Memory-Intensive Kernels for Multicore 53

Opteron 2356
(Barcelona)

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00

D
en
se

Pr
o
te
in

S
p
h
er
es

C
an
it
le
v

Tu
n
n
el

H
ar
b
o
r

Q
C
D

S
h
ip

E
co
n

E
p
id
em

A
cc
el

C
ir
cu
it

W
eb
b
as
e LP

Matrix

G
F
lo

p
/

s

Xeon X5355
(Clovertown)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

D
en
se

Pr
o
te
in

S
p
h
er
es

C
an
it
le
v

Tu
n
n
el

H
ar
b
o
r

Q
C
D

S
h
ip

E
co
n

E
p
id
em

A
cc
el

C
ir
cu
it

W
eb
b
as
e LP

Matrix

G
F
lo

p
/

s

BlueGene/P

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en
se

Pr
o
te
in

S
p
h
er
es

C
an
it
le
v

Tu
n
n
el

H
ar
b
o
r

Q
C
D

S
h
ip

E
co
n

E
p
id
em

A
cc
el

C
ir
cu
it

W
eb
b
as
e LP

Matrix

G
F
lo
p
/
s

Reference (max threads) Auto-tuned (portable C) Reference (serial)

FIGURE 5.9: Auto-tuning Sparse Matrix-Vector Multiplication. Note, hor-
izontal axis is the matrix (problem) and multicore scalability is not shown.

5.6.3 Sparse Matrix-Vector Multiplication (SpMV)

Figure 5.9 shows the benefits of auto-tuning SpMV on our three computers.
Unlike the previous two figures, where optimization and benefit is basically
independent of problem size, the horizontal axis in Figure 5.9 represents dif-
ferent problems (matrices). The ordering preserves that in Figure 5.4. The
lowest bar is the untuned serial performance, while the middle bar represents
untuned performance using the maximum number of cores. The top bar is the
tuned (portable C) performance using the maximum number of cores. Unlike
the other kernels, a non-portable ISA-specific auto-tuner was not implemented
for SpMV.

The auto-tuning search strategy is somewhat more complex. Register,
cache and TLB blocking use a footprint minimization heuristic based on cache
and TLB topology, where prefetching is based on an exhaustive search quan-
tized into cache lines.

We observe a trimodal performance classification: problems where both the
vectors and matrix fit in cache, problems where only the vectors can be kept in
cache, and problems where neither the matrix nor the vectors can be kept in
cache. Clearly, on barcelona, no matrix ever fits in the relatively small cache,
but the performance differences between the problems where the vectors fit
can be clearly seen. On Clovertown, where the cache grows from 4 MB to
16 MB using all 8 cores, we can see the three matrices that get a substantial
performance boost through utilization of all the cache and compression of the
matrices. Blue Gene/P, like Barcelona can never fit any matrix in cache, but
we can see the problems where the vectors don’t fit — Economics through
Linear Programming.

As it turns out, on Barcelona, NUMA-aware allocation was an essential
optimization across all matrices. Across all architectures, matrix compression
delivered substantial performance boosts on certain matrices. Interestingly, on

54 Performance Tuning of Scientific Applications

Blue Gene/P, matrix compression improved performance by a degree greater
than the reduction in memory traffic — an effect attributable to an initially
compute-bound reference implementation. Interestingly, TLB blocking deliv-
ered substantial performance boosts on only one matrix, the extreme aspect
ratio linear programming problem.

We observe that threading alone provided median speedups of 1.9×,
2.5×, and 4.2× on Barcelona, Clovertown, and Blue Gene/P. Clearly, only
Blue Gene/P showed reasonable scalability. However, when coupled with auto-
tuning, we observe median speedups of 3.1×, 6.3×, and 5.1× and maximum
speedups of 9.5×, 11.9×, and 14.6×. Ultimately, performance is hampered by
memory bandwidth on both Barcelona and Clovertown, leading to sublinear
scaling. As a result, auto-tuning strategies targeted at reducing memory traffic
are critical.

5.7 Summary

Näıvely, one might expect that nothing can be done to improve the perfor-
mance of memory-intensive or memory-bound kernels like stencils, LBMHD,
or SpMV. However, in this chapter, we discussed a breadth of useful optimiza-
tions applicable not only to our three example kernels but to many others
domains. Unfortunately, no human could explore all the parameterizations of
these optimizations by hand. To that end, we showed how automatic perfor-
mance tuning, or auto-tuning, can productively tune code and thereby dramat-
ically improve performance across the breadth of architectures that currently
dominate the top500 list. Unfortunately, to achieve the best performance, non-
portable ISA-specifc auto-tuners that generate explicitly SIMDized code are
required.

5.8 Acknowledgments

We would like to express our gratitude to Forschungszentrum Jülich for ac-
cess to their BlueGene machine. This work was supported by the ASCR Office
in the DOE Office of Science under contract number DE-AC02-05CH11231,
by NSF contract CNS-0325873, and by Microsoft and Intel Funding under
award #20080469.

Bibliography

[1] D. Bailey. Little’s Law and High Performance Computing. In RNR Technical Report,
1997.

[2] David Callahan, John Cocke, and Ken Kennedy. Estimating interlock and improving
balance for pipelined architectures. J. Parallel Distrib. Comput., 5(4):334–358, 1988.

[3] Steve Carr and Ken Kennedy. Improving the ratio of memory operations to floating-
point operations in loops. ACM Trans. Program. Lang. Syst., 16(6):1768–1810, 1994.

[4] Solaris Memory Placement Optimization and Sun FireServers. http://www.sun.com/

software/solaris/performance.jsp, March 2003.

[5] J. L. Hennessy and D. A. Patterson. Computer Architecture : A Quantitative Ap-
proach; fourth edition. Morgan Kaufmann, San Francisco, 2007.

[6] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

[7] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quan-
titative System Performance: Computer System Analysis using Queueing Network
Models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[8] S. Phillips. Victoriafalls: Scaling highly-threaded processor cores. In HotChips 19,
2007.

[9] STREAM: Sustainable Memory Bandwidth in High Performance Computers. http:

//www.cs.virginia.edu/stream.

[10] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A Library of Automatically Tuned Sparse
Matrix Kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series. Institute
of Physics Publishing, June 2005.

[11] S. Williams. Auto-tuning Performance on Multicore Computers. PhD thesis, EECS
Department, University of California, Berkeley, December 2008.

[12] S. Williams, D. Patterson, L. Oliker, J. Shalf, and K. Yelick. The roofline model: A
pedagogical tool for auto-tuning kernels on multicore architectures. In IEEE HotChips
Symposium on High-Performance Chips (HotChips 2008), August 2008.

[13] S. Williams, A. Watterman, and D. Patterson. Roofline: An insightful visual perfor-
mance model for floating-point programs and multicore architectures. Communications
of the ACM, April 2009.

55

