DQGMRES: a Direct Quasi — Minimal Residual
Algorithm
Based on Incomplete Orthogonalization *1

Yousef Saad and Kesheng Wu

University of Minnesota, Computer Science Department

May 1, 1995

Abstract

We describe a Krylov subspace technique, based on incomplete or-
thogonalization of the Krylov vectors, which can be considered as a
truncated version of GMRES. Unlike GMRES(m), the restarted ver-
sion of GMRES, the new method does not require restarting. Our
numerical experiments show that DQGMRES method often performs
better than GMRES(m). In addition, the algorithm is flexible to vari-
able preconditioning, i.e., it can accommodate variations in the precon-
ditioner at every step. In particular, this feature allows us to use any
iterative solver as a right-preconditioner for DQGMRES. This inner-
outer iterative combination often results in a robust approach for in-
definite linear problems.

*This work was supported in part by DARPA under grant number NIST
60NANB2D1272 and in part by NSF under grant number NSF/CCR-9214116.

"This is a revision of a previous technical report of UMSI-93/131, Minnesota Super-
computing Institute, University of Minnesota, 1993



1 Introduction

There has been a flurry of activity in the general area of iterative methods
for solving large sparse linear systems of equations in recent years, spurred
in part by the increased demand for efficient solvers for three-dimensional
problems. Among the methods of choice are the Krylov subspace techniques
which find approximate solutions to a linear system Az = b, that are of the
form z,, = 20 4+ ¢m-1(A)ro, where zo is an initial guess, ro = b — Axo,
and ¢,,_1 is a polynomial of degree < m — 1. The GMRES algorithm [8],
is a method which minimizes the residual norm over such approximations
and is, at least in its standard non-restarted form, optimal in some sense.
There are also a number of Krylov subspace methods that do not obey any
optimality property but which perform quite well in practice. These are
methods such as the bi-conjugate gradient method and techniques derived
from it such as BICGSTAB and TFQMR. In this paper we will present an
algorithm in this category which combines quasi-minimization concepts and
incomplete orthogonalization. To be specific, the Arnoldi vectors are only
orthogonalized against a small number of previous vectors, a technique which
we refer to as incomplete orthogonalization. In addition, the algorithm
attempts to extract an approximate smallest-residual norm solution, via a
‘quasi-minimization’ process which ignores the non-orthogonality of the basis
of the Krylov subspace resulting from the incomplete orthogonalization.

Since the algorithm to be presented is closely related to some of tech-
niques already described in the literature, we will start by recalling in Section
2 some of the main ideas in this context. Sections 3 and 4 describe the idea of
incomplete orthogonalization and present the DQGMRES algorithm. Sec-
tion 5 describes a few properties of DQGMRES. Section 6 reports on some
numerical experiments and Section 7 is a tentative conclusion.

2 Methods based on full Arnoldi orthogonaliza-
tion
Given an initial guess ¢ to the linear system
Az = b, (1)

a general projection method seeks an approximate solution z,, from an affine
subspace zg+ K, of dimension m by imposing the Petrov-Galerkin condition

b— Az, L Lo, (2)

where L,, is another subspace of dimension m. A Krylov subspace method
is a method for which the subspace K,, is the Krylov subspace

K (A, ro) = span{rg, Arg, Alrg, .. .,Am_lro}, (3)



in which rg = b — Axg.

Arnoldi’s algorithm introduced in 1951 builds an orthogonal basis of the
Krylov subspace K,,. The following is a version of the algorithm based on
the modified Gram-Schmidt process.

ALGORITHM 1 Arnoldi
1. Start. Choose a vector v of norm 1.
2. Iterate.
3. Forj=1,2,....m do:
o Compute w; := Av;

. , B = (w. v
o forv=1,...,7 do 1% (wjvvl)

wj = wj — hyjvi ,
o Compute hjy1; = ||wj|l2. If hjyq,; = 0 stop.

o Compute vj41 = w;/hj4q ;.

We denote by V,,, the n X m matrix with column vectors vy, ..., vy, by
H,, the (m + 1) x m Hessenberg matrix whose nonzero entries are defined
by the algorithm. and by H,, the matrix obtained from by deleting its last
row is denoted by H,,. Then the following relations hold:

= Vm-l-lgmv (5)
VAV, = H,. (6)

The algorithm breaks down in case the norm of w; vanishes at a certain
step j. In fact, it can be shown that Arnoldi’s algorithm breaks down at
step j (i.e., w; = 0 in Algorithm 1) if and only if the minimal polynomial of
vy is of degree j. In this situation, the subspace K is invariant.

Using an orthogonal projection method onto the Krylov subspace con-
sists of imposing the condition that the residual vector be orthogonal to
the subspace K,,. The Full Orthogonalization Method (FOM) [12] uses the
Arnoldi basis to implement this condition. Given an initial guess 2 to the
linear system (1) we consider the choice

vi=ro/B, [ = |lroll2 (7)

in the Arnoldi procedure. Then from (6) we have VIAV,, = H,,, and by
(7) we have,

Vg = VI(Boy) = Fey.



As a result, writing the sought approximate solution as z = xg + V,,,y, the
orthogonality condition

b— Alzo + Viy] L span{V,,}

immediately yields

VTz;[To - Ame] = 0.
Therefore, the approximate solution using the above m-dimensional sub-
spaces is given by

Tm = o+ Vilm, (8)
yn = H ' (Ber). (9)

The Generalized Minimum Residual Method (GMRES) [8] is a projection
method which minimizes the residual norm over all vectors in the affine sub-
space zg+ K,,. The implementation of an algorithm based on this approach
exploits again the Arnoldi basis. Writing again any vector z in z¢ + K,, in
the form o = zg + V,,y, where y is an m-vector we now define,

J(y) = llb— Azfly = [|b = A(zo + Viny) |2 - (10)

Exploiting the relation (5), and the fact that V,,,41 is orthonormal it is easily
shown that

J(y) = ||Ber — Hpyll2 -

As a result of the above formula, the GMRES approximation from the
m-th Krylov subspace can be obtained as

Tym = o+ Viuyn where (11)
Ym = argmin,||Be; — Hpylla . (12)

The minimizer y,, is inexpensive to compute since it requires the solution
of an (m + 1) x m least squares problem and m is typically small.

In order to solve the least squares problem min ||3e; — H,, ||, it is natural
to transform the Hessenberg matrix into upper triangular form by using
plane rotations. We define the rotation matrices

1

Q. = c 8 — TOW ¢ 7 (13)

—8; ¢ —rtow 1+ 1




with ¢? 4+ s? = 1. If we are dealing with the GMRES approximation from
K, then these matrices are of size (m + 1) X (m 4 1).

We can multiply the Hessenberg matrix H,, and the corresponding right-
hand-side go = ey by a sequence of such matrices from the left, at each
time choosing the coefficient s;,¢; so as to eliminate h;y;;. For example,
when m = 5, after applying the 5 such rotations, we transform the problem

into,
5 5 5 5 5
S 3§
R D D :
7(5) h h h _ | s
H5 = 33 ?54) ?55) 9 gs = . (14)
Sl |
hss )
0 Ve
The scalars ¢; and s; of the ¢th rotation €); are defined by
hiv1,i LY
| R — ()
V)2 + (higa 02 V)2 + (higa 02
We now define @J,,, to be the product of the matrices €;,
Qm = Q1 ... 01, (16)
and
R, = H™ =Q,.H, (17)
gn = Qu(Ber) = (v, ¥mi)” - (18)

Then, ), is unitary and as a result we have
Inyin l|Ber — f{myH? = myin Gm — RmyH2 .

The solution to the above least squares problem is obtained by simply solving
the triangular system resulting from ignoring the last row of the matrix R,,
and right-hand-side g, in (14). In addition, it is clear that for the solution
Y« the ‘vesidual’ norm ||Be; — H,,y.|| is nothing but the last element of the
right-hand-side, i.e., the term ~g in the above illustration.

Consider the residual vector associated with a generic vector in zg+ K,y
of the form =z = zg + V,,,y. We have

b—Ax = b—A(zo+ Vay)
= ﬁvl - Vm+1Hmy
Vinr1QF, Qm (Ber — Hyy)

= Vm-l—l@ﬁ (gm - Rm@/) .



Thus, because of the fact that the last row of R,, is zero, the 2-norm of
Gm — Ry is minimized when y annihilates all components of the right hand
side g,, except the last one, which is equal to v,,,41. Therefore,

b— Az, = Vm—l—l@?n('ym-l-lem-l-l) (19)

and, as a consequence,

16— Azmlls = [Ym4a] - (20)

In practice, this QR procedure is implemented in a progressive manner,
i.e., at each step of the GMRES algorithm the QR factorization is performed
on the new column of H,,. This allows us in particular to have the residual
norm at every step, with virtually no additional arithmetic operations. The
idea is simply to save the previous rotations, then apply them on each newly
computed column of H,,. Once this is done we can then determine the last
rotation needed to eliminate hy,,41,.,. For details see [8].

3 DQGMRES: a Truncated version of GMRES

In GMRES and FOM the dimension m of the Krylov subspace increases by
one at each step and this makes the procedure impractical for large m. There
are two standard remedies for this. The first is to restart the algorithm.
The dimension m is fixed and the algorithms is restarted as many times
as necessary for convergence, with an initial vector defined as equal to the
latest approximation obtained from the previous outer iteration.

A popular alternative is to resort to a truncation of the vector recur-
rences. In this context we would like to truncate the Arnoldi recurrence to
obtain a procedure which is described next.

3.1 Incomplete Arnoldi Orthogonalization

In the incomplete Arnoldi procedure, we select an integer k and perform the
following ‘incomplete’ Gram-Schmidt orthogonalization.

ALGORITHM 2 Incomplete Arnoldi Procedure:
1. Forj=1,2,..,m do:
(a) Compute w := Avj;

(b) Fori=max{l,j—k+1},...,7J do{ hij = (w,vi),

w = w — hiv;

(c) Compute hyy1; = [[wlly and vja = w/hjsn .



The only difference with the full Arnoldi orthogonalization is that at each
step the current vector is orthogonalized only against the k& previous ones
instead of all of them. The vectors generated by the above algorithm are
known to be ‘locally’ orthogonal to each other, in that

(?JZ',?J]‘) = (52']‘ for |Z —j|<k.

In addition, the relations (4) — (5) are still valid, but the matrix H,, now has
a particular structure, namely, it is banded Hessenberg with total bandwidth
of k + 1, since h; ; = 0 for ¢ < 5 — k.

The IOM algorithm [12, 11] is defined similarly to the FOM algorithm
except that the Arnoldi vectors obtained are not orthogonal but locally or-
thogonal. Because of the band structure of H,,, it is possible to derive a
CG-like scheme called Direct IOM (DIOM) whereby the approximate solu-
tion x,, is updated from x,,_1 by z,, = m_1 + (upm and p,, is obtained
from a short term recurrence. For detail see [11].

3.2 DQGMRES

Similarly to IOM we can define an Incomplete GMRES algorithm which
we call Quasi GMRES (QGMRES) for the sake of notational uniformity
with other existing algorithms developed in the literature. In simple terms,
QGMRES implements the GMRES procedure in which the Arnoldi Algo-
rithm is replaced by the Incomplete Orthogonalization Algorithm 2. This
technique was first described by Brown and Hindmarsh [2] who reported
some numerical tests with it in the context of systems of ODF’s.

ALGORITHM 3 Quasi-GMRES Algorithm

Run a modification of GMRES algorithm in which the Arnoldi process is
replaced by the Incomplete Orthogonalization process and every other com-
putation remains unchanged.

Note that we are implicitly ignoring the fact that vectors obtained from the
incomplete Orthogonalization procedure are not fully orthonormal. Thus,
the approximate solution does not obey any obvious optimality property.

In the Incomplete Arnoldi process we only need to keep the k previous
v;’s. However, although this may potentially save us some computations,
it does not save any storage, since when we compute the solution by the
formula (11) we must again access all the vectors v;. Fortunately, it is
also possible to implement a ‘Direct’ version called DQGMRES the goal of
which is to obtain the approximation progressively, i.e., in a CG-like scheme
whereby the approximate solution x,, is updated from z,,_; using auxiliary
vectors which obey a short-term recurrence. The derivation of DQGMRES
is very similar to that of DIOM.



We first note that if H,, is banded as for example when m = 5,k = 2,

hll h12
h21 h22 h23
7o has  hss  hsg
Hs = his hag
h54

B

0

0
h45 9 g - 0 (21)
h55 0
h65 0

then the premultiplications by the rotations matrices 2; as described in the
previous section, will only introduce an additional diagonal, in this case we

will get,
™1 T12 713 gal
T22 T23 Ta4 Y2
f{(5) _ T33 T34 T35 = _ |78 29
5 Taq Tas 9 gs ( )
T55 .
0 Ve

The DQGMRES solution is given by,

Tm = To + VmRT_nlgmv

where R, and g, are obtained by removing the last row of R,, and g,
respectively. Similarly to DIOM [12] we define

P, =V,R .

Then,

We also note that similarly with DIOM, we have

Im—1
Im =
in which
Ym = Cm'yr(nm_l)v Ym+1 = _SMVT(nm_l)
where ’yT(nm_l) is the last component of the vector g,,_1, i.e., the right-hand-

side before the m-th rotation is applied. As a result, z,, can be updated at

each step, via the relation,

Tm = Ty + YmPm -

ALGORITHM 4 DQGMRES



1. Start: Choose an initial guess xg then compute ro = b — Axg and

70 := [I7ollz, v1 == ro/71.
2. Loop: Form = 1,2,..., until convergence do,
1. Compute h;p,, 1 = max{l,m —k+1},...,m — 1, and v,,41 as in

Steps 1-a, 1-b, 1-c of Algorithm 2.
2. Update the QR factorization of H,,, i.e.,
e Apply the rotations Q;, t = m — k,...,m — 1 to the m-th
column of H,, just computed;

o Compute the rotation coefficients ¢,,, s, by (15);
3. Apply rotation Q,,, to H,, and g,,, i.e., compute

® Ym+1 = —SmVYm>

® Tm = CmYm, and;

L4 hmm = thmm + Smhm-l-l,mv (: \/ hzn-l—l,m + h%nm)

5. Tm = Ty + TYmPm

6. If |Yma1]| is small enough then stop.

4 Properties of DQGMRES

The DQGMRES algorithm does not minimize the norm of the residual vector
over xg+ K, but attempts to perform an approximate minimization. Indeed,
formula (19) is still valid since orthogonality is not used to derive it. If the
v;’s were orthogonal to each other then we are back in the situation of
GMRES and the residual norm is minimized over all vectors of the form
xg + Vipy. Since the v;’s are only locally orthogonal we will only realize
an approximate minimization. In addition, we no longer have the relation
(20) which provides the residual norm from a known quantity. Indeed, this
relation had been derived by exploiting the orthogonality of the v;’s. It
turns out that in practice |v,,41| remains a reasonably good estimate of the
actual residual norm in general because of the fact that the »;’s are nearly
orthogonal. The following inequality which is easy to show

16 — Azl < V4 1Ymsa] (23)

provides an actual upper bound of the residual norm in terms of computable
quantities. The proof of this inequality is an immediate consequence of (19).



If we call ¢ = (7);—; .41 the unit vector ¢ = Q7 epqq then

m+1
16— Azl = Pogrl Vinsadlle = [ymaal | D vimi
=1 2
m+1
< gl D2 willalmil
=1
< Ymgalvm+ 1

The last relation is due to the Cauchy-Schwartz inequality. As a result,
using |ym+1| as a residual estimate, we will be making an error by a factor
of vVm + 1 at most. In general, this is an overestimate and |v,,11| tends to
give enough accuracy as an estimate for the residual norm.

It is also interesting to observe that if we are willing to sacrifice a little
bit of arithmetic, we can actually compute the exact residual vector and
norm. This is based on the observation that, according to (19), the residual
vector is ¥,,+1 times the vector z,,41 which is the last column of the matrix

Zm—l—l = Vm—l—l Qz;b

It is easy to verify that this last column can be updated from v,,41 and z,,.

Indeed,

D1 = [va Um-l-l]Qﬁ—lQﬁ
= [VmQ?rL—lv vm-l-l]Qﬁ
= [va vm-l-l]ng

and by equating the last columns of both sides, we get,
Zmdl = —SmZm + ComVma1- (24)

The z;’s can be updated at the cost of one extra vector in memory and 3n
operations at each iteration. The norm of z,,41 can be computed at the cost
of 2n operations and the exact residual norm for the current approximate
solution can then be obtained by multiplying this norm by |v,,41],

Irmll = Pymasl 1Zmaall - (25)

This is a little expensive so we may elect to just ‘correct’ the estimate
provided by 7v,,41 by exploiting the above recurrence relation and writing,

[Zmtille < lsml [[zmll2 + [em]-

If we set (, = ||zm||2 , then we have the recurrence relation,

Cm—l—l S |5m|Cm + |Cm| (26)

10



The above relation which costs virtually nothing to update provides an upper
bound that is sharper than (23).

An important characteristic of DQGMRES is that it is flezible, i.e., it
allows variations in the preconditioner. Specifically, when right precondi-
tioning is used, the preconditioner M is allowed to vary at each step. The
idea is similar to that of FGMRES [14]. In both cases we must compute
the vectors Mj_lvj’s and in the case of FGMRES, we need to save these
vectors which requires extra storage [14]. In the case of DQGMRES, this is
no longer required since the preconditioned vectors only affect the update
of the vector p; in the formula,

[ =
pj:F M; vj—' Z hijpi | -

77 i=j—k+1
Thus, Mj_lvj can be discarded immediately after it is used in the above
formula. In fact, we can simply overwrite it onto the space used for p; and
modify step 4 of Algorithm 4 accordingly. Because of this flexible precon-
ditioning feature, we can use DQGMRES in a nested fashion, for example,
GMRES or DQGMRES can be used as preconditioners to DQGMRES. We
note that similar features are also presented in the GMRESR family of al-
gorithms introduced by Van der Vorst and Vuik [16] and in the algorithms
presented by Axelsson and Vassilevski [1].

We next examine the relation between DQGMRES and the full GMRES
algorithm. In what follows we denote by 7@ and ¥ the residuals of the
m-th iterate obtained by DQGMRES and GMRES respectively. With this
we can state the following result.

Theorem 1 If both DQGMRES and the full GMRES do not break-down,
then,
Ir2llz < Ka(Vins) 75 2. (27)

where k3(Vy,41) is the condition number of V,, 11 with respect to the 2-norm.

This result was first given in an early draft of this paper [9]. It is proven
by Jia [6]. The proof uses the pseudo-inverse Vn:l;-|-1 to express the DQGM-
RES residual. A similar result was proved for the QMR algorithm [5, 7].

As is known, the GMRES algorithm breaks down at a given step if and
only if the exact solution is found at this step. Next we study the break-down

behavior of DQGMRES.

Theorem 2 Assuming A is non-singular, if DQGMRES breaks down at
step m, then x,, is exact.

11



Proof. There are two divisions in Algorithm 4, one in the Incomplete
Arnoldi Process, and the other in step 2.4. If the incomplete Arnoldi process
breaks down, fy,q1,, is zero. If step 2.4 breaks down, h%l is zero which
implies that H,, is rank deficient. Since A is not singular, and V,, is a basis
for K,,(A,r0), by equation (5) H,, must have full column rank. Thus if
DQGMRES breaks down, A,,41,, must be zero.

If hpt1,m is zero, then s, is zero (equation (15)), V41 in Algorithm 4
step 2.3 is zero, and r,, is zero according to equation (25). a

We should remark that, according to the proof, the only way in which
DQGMRES can break down for a non-singular matrix, is when the Incom-
plete Arnoldi Process breaks down, i.e., when %41, = 0. For a Krylov
subspace method, %41, = 0 implies that it is possible to compute the
exact solution. An important point here is that the exact solution can be
computed.

Theorem 3 Let A be a non-singular matriz. If DQGMRES finds the exact
solution at step m, and not in a previous step, then the minimal polynomial
for rq is of degree m.

Proof. According to equation (25), if DQGMRES finds the exact so-
lution, we have either v,,41 = 0 or 2,41 = 0. Since DQGMRES did not
find the exact solution in previous steps, ¥; and z; must be nonzero for for
1=1,2,...,m.

If ¥p41 = 0, then s, = 0. According to equation (15), hy,41,,, must be
zero in this case. Therefore the grade of rq, i.e., the degree of the minimal
polynomial for rq is m.

Since 2,41 is a linear combination of ro, Arg, ..., A™rg, if 2,41 is zero,
the grade of rg must be < m. That the grade is exactly m follows from
the relation (24). First, we observe that we cannot have ¢, = 0. Otherwise
(24) would give us z,,4+1 = 2, and this would lead to the contradiction that
zm = 0. Therefore, by (24) z,41 has a nonzero component in v,,41 which
can easily be proven to have a nonzero component in A™wv;. Hence, the
grade of rg is m. a

Similarly to GMRES, if DQGMRES breaks down, we have a lucky break-
down. If GMRES finds the exact solution, it will break down, but DQGM-
RES may not necessarily break down if it finds the exact solution. In the
full GMRES, the grade of 7 is equal to m — 1 if and only if hyq1,, = 0.
In other words GMRES breaks down iff the grade of r¢ is equal to m — 1 iff
x., is exact. However, this is not true for DQGMRES, and the results must
be separated as was done above.

In practice, the lucky breakdown scenario is very unlikely to occur except
in special cases. Theorem 2 and 3 seem to hint that DQGMRES is less likely

12



to break down than the full GMRES essentially because DQGMRES cannot
reach the exact answer as fast as the GMRES.

5 Numerical Experiments

We now illustrate the behavior of DQGMRES with a few numerical tests a
collection of problems. The methods we will refer to in this section are the
following.

1. BiCGSTARB Bi-Conjugate Gradient method stabilized, a method due
to van der Vorst [18] and based on the bi-CG algorithm.

2. TFQMR Transpose-Free Quasi-Minimum Residual method due to
Freund [4].

3. GMRES Generalized Minimum Residual method of Saad and Schultz
[8]. Specifically, we use a restarted version, i.e., GMRES(m).

4. DIOM The Direct implementation of Incomplete Orthogonalization
Method [12].

5. ORTHMIN The full version of ORTHOMIN [17, 3] is mathematically
equivalent to GMRES. The truncated version ORTHMIN(k) is similar
in spirit to DQGMRES(k). For details see, e.g., [3].

6. FGMRES The Flexible-GMRES [14] allows variable right-preconditioning.

7. DQGMRES The new method described in section 4.

Both TFQMR and DQGMRES compute the exact residual norm since
we wish to use the residual norm in the stopping test for all iterative solvers.
Thus TFQMR and DQGMRES are more expensive than their cheapest
forms respectively.

Table 1 shows the required workspace size and number of floating-point
operations averaged over the number of matrix-vector multiplications used
by each iterative solver. Most of the iterative solvers are from the iterative
solution module of SPARSKIT and PSPARSLIB [13, 10]. Both complexity
and number of FLOP shown here are as implemented in SPARSKIT. In
particular they do not account for the small order costs associated with
the solutions of the small projected matrix problems. The FLOP reported
are the FLOP per matrix-vector multiplication excluding the operations
used by the matrix-vector multiplications. We implemented the Arnoldi
and incomplete Arnoldi processes with re-orthogonalization. This further
modification of the Gram-Schmidt process performs a reorthogonalization
only when it suspects a significant loss of accuracy due to cancellation.

13



space FLOP
BiCGSTAB 8n 11n
TFQMR 12n 19n
GMRES(m) | (m+2)n | (2m+5)n
2(m+1)n | (2m+5)n

FGMRES(m)
ORTHMIN(k) | 2(k+1)n | (6k+8)n
DIOM(k) | (2k+1)n | (6k+4)n
DQGMRES(E) | 2(k+1)n | (6k+12)n

Table 1: Complexity of the iterative solvers used.

This makes GMRES and its variants more expensive than what is shown in
Table 1. However, the parameters are chosen so that re-orthogonalization is
performed very infrequently.

The linear systems tested are constructed from the matrices to have
random solutions. The iterative solvers are given a different set of random
vectors as initial guesses. The test matrices are part of a collection extracted
from the solution of the fully coupled Navier-Stokes Equations in the test
examples provided in FIDAP — a fluid dynamics package. These examples
consist of a wide variety of problems from Couette flow to turbulent flow,
some of which include heat transfer and chemical reactions. The elements
used are of type Q2 for the velocity and P1 for the pressure for 2D prob-
lems. For three-dimensional problems, the package uses the so-called Brick
elements (8 nodes). The grids used in the problems are regularly structured
but not uniform. There are 35 matrices in the set, out of which 13 are
symmetric, and one is very small in size. We excluded these 14 small or
symmetric matrices from the tests. We show in Table 2 the names of the
matrices used along with their sizes and number of nonzero elements.

We report the results of applying 14 different solvers on the 21 linear sys-
tems constructed. In our tests, a solution z; is considered to have converged
if the residual satisfies,

[I7ill < 107%[rol| + 107",

The abbreviations used in the table headings are explained in Table 3. The
iterative solvers are allowed to use 1000 matrix-vector multiplications in the
first part of this experiment. In the inner-outer schemes, we allow a total of
up to 10,000 matrix-vector multiplications, altogether.

Table 4 compares the number of successful convergence cases for dif-
ferent values of the maximum number of matrix-vector multiplications al-
lowed. This test is done without using any preconditioning. We observe that

14



Name N NNZ || Name N NNZ
EX6 1651 49533 || EX25 848 24612
EX7 1633 54543 || EX26 2163 74464
X8 3096 90841 || EX27 974 40782
EX11 16614 109648 || EX28 2603 77781
EX18 5773 71805 || EX29 2870  237H4
EX19 12005 259577 || EX31 3909 91223
EX20 2203 69981 || EX35 19716 227872
EX21 656 19144 || EX36 3079 53843
EX22 839 22715 || EX37 3565 67591
EX23 1409 43703 || EX40 7740 458012
EX24 2283 48737

Table 2: The 21 test matrices from FIDAP.

BiCGSTAB
TFQMR
GMRES
DIOM
ORTHMIN
DQGMRES

LoOoOYQ NS

Table 3: Abbreviations used in table headings.

DQGMRES(k) always solves more problems than DIOM(%). DQGMRES(k)
is also better than GMRES(2k). ORTHMIN(%) and DQGMRES(%) perform
similarly in this case. The number of linear systems solved by BiCGSTAB
and TFQMR is less than that of DIOM (%), ORTHMIN(%k) and DQGMRES(k),
but is more than that of GMRES(m). The performances of DIOM(k),
ORTHMIN(k) and DQGMRES(k) do not seem to depend significantly on
the value of k.

Tables 5-6 show similar results when preconditioning is used. Three
preconditioners are employed.

e Scaling. The matrix is scaled both from the left and right. The ith
row is scaled by the square root of the row norm, and the jth column is

scaled by the square root of the column norm, a;; = a;;/+1/l|a:||||la;||.

The objective is to reduce the difference between the ith row norm
and the ¢th column norm.

15



B | 7 ]G(10) ] G(20) | G(40)] D(5) | D(10)
100 1 2 1 2 2 2 2
500 3 3 3 3 3 3 3
1000 4 4 3 3 3 5 5

D(20) | O(5) | O(10) | 0(20) | Q(5) | 2(10) | Q(20)
100 2 3 3 3 3 3 3
500 3 4 4 4 4 4 4
1000 5 7 7 7 7 7 7

Table 4: Number of successful convergence cases versus number of matrix-
vector multiplications allowed for unpreconditioned linear systems.

B | 7 ]G(10) ] G(20) | G(40)] D(5) | D(10)
50 4 4 4 4 5% 3 4
100 5 5 4 6 7 4 5
500 9 10 7 8 9 8 7
1000 10 10 7 8 11 8 8

D(20) | O(5) | O(10) | 0(20) | Q(5) | 2(10) | Q(20)
50 4 3 3 4 3 4 4
100 5 4 4 6 4 5 5
500 8 5 6 7 8 7 8
1000 8 5 6 7 8 8 8

Table 5: Number of successful convergence cases versus number of matrix-
vector multiplications allowed for preconditioned linear systems.

e The ILUT(k,€) preconditioner [15] is an incomplete LU factorization
with a dual dropping strategy. The number of fill-in elements in both
L and U factors are limited by k, and those elements with magnitude
less than € of the row norm are dropped. The ILUT preconditioned
used here is ILUT(10, 107%).

o The ILUTP(k, e, 7) preconditioner. This is an extension of ILUT which
performs column pivoting. The pivoting threshold is 7. We used
ILUTP(10, 1078, 0.02).

The preconditioners are used in the order shown here. First, the scaling is
used on all 21 linear systems, 5 are solved. We then apply ILUT(10, 107%) to
the 16 linear systems left. Four additional systems are solved this way. The
ILUTP(10, 1078, 0.02) is used on the unconverged 12, of which two more

16



B T G(10) | G(20) | G(40) | D(5) | D(10)
scale 5 5 3 3 5 4 4
ILUT 3 3 3 3 4 3 3
ILUTP 2 2 1 2 2 1 1
D(20) | O(5) | O(10) | O(20) | Q(5) | Q(10) | 9(20)
scale 4 4 4 4 4 4 4
ILUT 3 1 2 3 3 3 3
ILUTP 1 0 0 0 1 1 1

Table 6: Number of successful convergence cases for each preconditioner.

converged. Table 5 shows results from all the preconditioners altogether.
Table 6 shows the results of each of the three preconditioners.

Table 5 shows that if less than 100 matrix-vector multiplications are al-
lowed, GMRES(40) solves more linear systems than all others. This is some-
what expected. TFQMR takes the lead if 500 matrix-vector multiplications
are allowed, followed closely by BiCGSTAB and GMRES(40). The num-
ber of linear systems solved by ORTHMIN(%) is less than DQGMRES(k)
and DIOM(k). Similarly to the unpreconditioned case, the performances
of DIOM(k) and DQGMRES(k) do not depend significantly on k, whereas
ORTHMIN(k) does show some dependence on k, and GMRES(m) shows
the strongest dependence on its parameter m. From Table 6 we can see
that GMRES(40) works well with ILUT and ILUTP preconditioner, while
ORTHMIN does not do as well, especially for small values of the parameter
k.

unpreconditioned preconditioned
B 7 G(40) Q(20)| B T G(40) Q(20)
B 0 1 1 0 0 6 2 4
T 2 0 1 0 4 0 2 4
G(40) | 3 3 0 0 9 9 0 5
Q(20) | 7 7 6 0 6 6 2 0

Table 7: Number of cases where the methods heading the rows are better
than the methods heading the columns.

The next table, Table 7, reflects the efficiency of the solvers. It reports

the number of cases where the method heading a row is considered better
than the method heading a column. When solving one linear system, method

17



A is considered to be better than method B if (1) method A converges but not
method B; or, (2) method A uses at least 2 matrix-vector multiplications!
less than method B. A method can win over another one only if it has
converged on a problem.

Using this comparison criterion, we can see that DQGMRES(20) com-
pares very favorably with BICGSTAB, TFQMR, and GMRES(40). For ex-
ample, there are 7 linear systems where DQGMRES(20) works more effi-
ciently than BiCGSTAB without preconditioning, while there is no linear
system where BICGSTAB works faster than DQGMRES(20). Using roughly
the same amount of workspace, DQGMRES(20) solves 6 linear systems
faster than GMRES(40) without preconditioning. However when precon-
ditioned, GMRES(40) is more efficient than DQGMRES(20). There are 14
methods shown in the Tables 4-5. We can build a table similar to Table 7
with all 14 methods, the following table shows the row sum of this 14 x 14
table for the unpreconditioned case,

B | 7 ]G(10) | G(20) | G(40) | D(5) | D(10)
10 10 1 5 18 23 22
D(20) | O(5) | O(10) | 0(20) | Q(5) | 2(10) | Q(20)
29 53 58 69 57 64 71

The number shown for each column represents the total number of instances
where the method indicated is found better than another method. For ex-
ample there were a total of 18 instances where GMRES(40) was better than
another method. Similarly, we find the following counts for the precondi-

tioned case,

B | 7 ]G(10) ] G(20) | G(40)] D(5) | D(10)
58 55 28 54 86 27 28
D(20) | O(5) | O(10) | O(20) | Q(5) | 2(10) | Q(20)
40 25 34 46 34 40 51

According to the criterion used, we observe that in the unpreconditioned
case DQGMRES(20) is the most effective method. In the preconditioned
case GMRES(40) leads others with a wide margin, while DQGMRES(20) is
now behind BiCGSTAB, TFQMR, and GMRES(20).

DQGMRES(5) solved 7 linear systems without preconditioning which
is 3 more than most of other methods (see Table 4). These three linear
systems are constructed from matrices EX8, EX18 and EX35. A surprising
fact is that when these matrices are scaled, DQGMRES can not solve any
one of them, nor can any of the other iterative solvers used, even with

A gap of 2 matrix-vector multiplication is chosen here because BiCGSTAB and
TFQMR uses 2 matrix-vector multiplication in one iteration.

18



ILUT(10,1078) and ILUTP(10,107%,0.02). If these three linear systems are
so hard to solve, why is DQGMRES(k) capable of solving them without
preconditioning? After investigating this, we concluded that the reason may
be the variation in the degree of normality of the matrices involved. We

define

A= |AAH — AHA||p
[AAT |
to be our indicator of deviation from normality for A, where || - || denotes

the Frobenius norm. The following table shows the A values before and
after the scaling.

Before Scaling After Scaling

N MATVEC N MATVEC
EX7 | 5x 107" 100 3x 1074 68
EX11 | 1 x 10716 919 2% 10716 156
EX29 | 2x 1075 61 8 x 1074 13
EX37 | 1x 1077 61 1x 1078 20
EX8 | 6 x 107° 499 4 x 1073 > 1000
EX18 | 2 x 10710 778 0.44 > 1000
EX35 | 3x 10710 845 0.41 > 1000

The columns headed with MATVEC are the number of matrix-vector mul-
tiplications used to solve this linear system by DQGMRES(5). We observe
that DQGMRES(5) did not solve any problem where A" > 1073. This ob-
servation suggests that DQGMRES is sensitive to normality, in that it does
tend to perform poorly for matrices that are far from normal.

outer FGMRES(20) DQGMRES(20)
inner | B | G(20) | O(10) | Q(10) | B | G(20) | O(10) | Q(10)
100 | 3 3 3 3 3 3 3 3
1000 | 6 6 6 7 6 6 6 7
5000 | 12 19 18 20 11 18 18 20
10000 | 19 20 19 21 18 20 18 21

Table 8: Number of linear systems solved using the inner-outer iteration
schemes.

Table 8 shows some tests of the flexible preconditioning feature of the
new method. To test this feature, we constructed an inner-outer iteration
scheme where the outer iterations are FGMRES(20) or DQGMRES(20), the
right-preconditioners for the outer iterative solvers are one of BiICGSTAB,

GMRES(20), ORTHMIN(10) or DQGMRES(10). The inner iterative solvers

19



B ] G(20) | G(40) | O(10) | ©(10) | 0(20)
100 2 3 3 3 3 3
1000 5 3 5 4 4 4
5000 | 16 5 7 8 8 8
10000 | 19 6 11 9 10 10

Table 9: Number of linear systems solved by the iterative solvers used in
the inner-outer iteration scheme.

will terminate if ||r;]] < 0.1 X [|ro|| + 107"* or more than 100 matrix-vector
multiplications have been consumed. In this part of the experiment we
scale the matrices as described earlier prior to calling the iterative solvers.
The data in Table 8 show that DQGMRES(20) could work just as well as
FGMRES(20) using the same amount work space and the same number
of inner iterations. DQGMRES(10) seems to be the best inner iterative
solver, both FGMRES(20) and DQGMRES(20) were able to solve all linear
systems using DQGMRES(10) as preconditioner. Table 9 shows the results
of allowing the iterative solvers involved in the inner-outer iteration scheme
to use up to 10,000 matrix-vector multiplications. From comparing Tables 8
and 9 it is clear that the inner-outer iteration scheme is more effective than
allowing more iterations in any one particular scheme used on its own.

6 Conclusion

The DQGMRES algorithm compares well with the best Krylov subspace
techniques available for solving linear systems. Similarly to GMRES, it can
only encounter lucky break-downs. Qur experience indicates that without
preconditioning, DQGMRES(k) usually performs as well as GMRES(2k).
When preconditioned is used our experience does not show a clear advantage
of DQGMRES over GMRES or vice-versa.

Without preconditioning DQGMRES(k) behaves very similarly to ORTHMIN (k).
With preconditioning, DQGMRES(k) does generally better than ORTHMIN(k).
Both DQGMRES(k) and ORTHMIN(k) save the k& most recent Krylov sub-
space basis vectors. The algorithms differ in the inner product used for
enforcing the orthogonality of the basis vectors. DQGMRES(k) uses 2-
norm, while ORTHMIN(k) uses AT A-norm. When the condition num-
ber of A is large, AT A may be numerically rank-deficient which could
cause ORTHMIN(%) to produce linearly dependent basis vectors. There-
fore, the orthogonality of the basis vectors can be more easily maintained in

DQGMRES(k), in general.

20



The performance of DQGMRES(k) does not depend as significantly on
the size of k as GMRES(m) does on m. This is an advantage of DQGMRES(k)
since it it can perform quite well with a rather small size of workspace used.
On the negative side, it is a disadvantage when compared with GMRES(m)
which typically benefits much more from increased workspace size when fac-
ing a hard problem.

DQGMRES(k) works well when the matrix is normal or nearly normal.
In the case when the matrix is symmetric, DQGMRES(1) can be as effective
as GMRES without restart. ;From a number experiments which we did not
report in this paper, we also found that DQGMRES(k), for £>1 appears to
perform considerably better than the Conjugate Gradient method.

DQGMRES is flexible, it allows the preconditioner to vary at each step.
While FGMRES(m) uses about twice the workspace as GMRES(m) in order
to achieve this feature, DQGMRES requires no modification, and therefore
no additional workspace. With this feature we can use arbitrary iterative
linear system solvers as preconditioners. The resulting inner-outer iteration
scheme is often a very robust procedure. In this case, DQGMRES(k) can
be used as a good outer loop solver as well as a very effective inner loop
preconditioner.

Acknowledgment.

The authors would like to acknowledge the support of the Minnesota
Supercomputer Institute which provided the computer facilities and an ex-
cellent research environment to conduct this research.

References

[1] O. Axelsson and P.S. Vassilevski. A block generalized conjugate gradient solver
with inner iterations and variable step preconditioning. SIAM J. Mat. Anal.,
12, 1991.

[2] P.N. Brown and A.C. Hindmarsh. Matrix-free methods for stiff systems of
ODEs. SIAM J. Numer. Anal., 23:610-638, 1986.

[3] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods
for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20:345—

357, 1983.

[4] Roland W. Freund. A transpose-free quasi-minimal residual algorithm for
non-Hermitian linear systems. STAM J. Sci. Comput., 14(2):470-482, March
1993.

[65] R.W. Freund and N.M. Nachtigal. QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numer. Math., 60:315-339, 1991.

21



[6]

[13]

[14]

[15]

[16]

[17]

Zhongxiao Jia. On IGMRES(q): incomplete generalized minimal residual
methods for large unsymmetric linear systems. Technical Report 94-047, De-
partment of Mathematics, University of Bielefeld, 1994. Last revision March,
1995.

Noel M. Nachtigal. A look-ahead variant of the Lanczos Algorithm and its
application to the Quasi-Minimal Residual method for non-Hermitian linear
systems. PhD thesis, Applied Mathematics, MIT, Cambridge, Massachusetts,
1991.

Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. STAM J. Sci. Statist. Comput., 7:856—
869, 1986.

Y. Saad and K. Wu. DQGMRES: a quasi-minimal residual algorithm based
on incomplete orthogonalization. Technical Report UMSI-93/131, Minnesota
Supercomputing Institute, Minneapolis, 1993.

Y. Saad and K. Wu. Design of an iterative solution module for a parallel
matrix library (p_sparslib). In W. Schonauer, editor, Proceedings of IMACS
conference, Georgia, 1994, 1995. TR 94-59, Department of Computer Science,
University of Minnesota.

Youcef Saad. Krylov subspace methods for solving large unsymmetric linear
systems. Math. Comput., 37:105-126, 1981.

Youcef Saad. practical use of some Krylov subspace methods for solving indef-
inite and unsymmetric linear systems. STAM J. Seci. Statist. Comput., 5:203—
228, 1984.

Youcef Saad. SPARSKIT: A basic toolkit for sparse matrix computations.
Technical Report 90-20, Research Institute for Advanced Computer Science,
NASA Ames Research Center, Moffet Field, CA, 1990.

Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. STAM
J. Sci. Comput., 14(2):461-469, March 1993.

Youcef Saad. ILUT: a dual threshold incomplete ilu factorization. Numerical
Linear Algebra with Applications, 1:387-402, 1994. Technical Report 92-38,
Minnesota Supercomputer Institute, University of Minnesota, 1992.

H.A. van der Vorst and C. Vuik. GMRESR: a family of nest GMRES methods.
Numerical Linear Algebra with Applications, 1(4):369-386, 1994.

P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets
of simultaneous linear equations. In Proceedings of the Fourth Symposium on
Reservoir Stmulation, pages 149-159. Society of Petroleum Engineers of AIME,
1976.

H.A. Van Der Vorst. BI-CGSTAB: a fast and smoothly converging variant of
BI-CG for the solution of nonsymmetric linear systems. STAM J. Sei. Statist.
Comput., 13:631-644, 1992.

22



