A Revised Proposal for a Sparse BLAS Toolkit

SPARKER Working Note # 3

Sandra Carney* Michael A. Heroux' Guangye Li Roldan Pozo?
Karin A.Remington* Kesheng Wu*

January 1996

Abstract

This paper describes a proposal for a “toolkit” of kernel routines for some of the basic
operations in (iterative) sparse numerical methods. In particular, we describe an interface
for routines which perform (i) sparse matrix times dense matrix product, (ii) the solution
of a sparse triangular system with multiple right-hand-sides, (iii) the right permutation of
a sparse matrix and (iv) a check for the integrity of a sparse matrix representation. The
interfaces for these four operations are defined for a variety of common data structures
and a set of guidelines is given to define interfaces for new data structures. The primary
purpose of this toolkit is to provide a set of basic routines upon which the “User Level
Sparse BLAS,” as described in [9], can be built. This paper is a revision of the original
proposal found in [14].

Keywords

Sparse matrices, sparse data structures, programming standards, sparse BLAS.

1 Introduction

Standard interfaces for numerical linear algebra software have been shown to be very
useful if the interface is simple yet flexible enough for a wide variety of users. Examples
of successful interfaces are the Level 1, Level 2 and Level 3 BLAS [16, 7, 6], LINPACK
[6] and EISPACK [19], and more recently, LAPACK [1]. However, with the exception
of perhaps the LINPACK banded storage scheme, widely adopted software standards for
numerical linear algebra have been almost exclusively for dense linear systems. There
are sparse extensions to the Level 1 BLAS (see [4]) which embody useful functionality.
However, we need to consider higher level functionality to adequately address the needs
of most iterative schemes.

Several efforts have been made at standards for sparse computations, but the task is

*Department of Computer Science, University of Minnesota. Work supported in part by the Army
Research Office and University of Minnesota AHPCRC.

fCray Research, Inc., 655 Lone Oak Dr. Eagan, MN 55121 USA.

National Institute of Standards and Technology, Gaithersburg, MD 20899

much more difficult. At the heart of this difficulty is the fact that there is no single
widely accepted data structure for sparse matrices. In fact, there are many well-known
data structures for sparse matrices and for each basic structure there are typically several
minor variations. Any standard which would allow only a single data structure would
severely limit the number of users that could effectively utilize the standard. Therefore,
attempts at standards for sparse linear algebra software have tried to accommodate a
variety of data structures.

One approach to standardized software for sparse linear systems is to provide a “toolkit”,
or collection, of routines which perform common operations, such as sparse matrix-vector
product, using a variety of common data structures. Some well-known examples of this are
SPARSKIT by Saad [18] and the Iterative BLAS of Oppe and Kincaid [17]. The proposal
described here is similar to the above two examples but is expressly developed to support
the User Level Sparse BLAS proposed in [9].

Beyond this explicit relationship to the User Level Sparse BLAS, we want to emphasize
that these kernels are generally useful for other high level interfaces. In particular, for
“object-oriented” interfaces such as those described in [20, 12, 15], the sparse BLAS toolkit
routines can serve as the primary computational kernels. Also, for iterative toolkits such
as the “templates” described in [3], the sparse BLAS toolkit can provide a complimentary
set of kernels.

1.1 Goals

The current goals of this proposal are to define an initial set of data-structure-dependent
kernel routines for sparse iterative numerical methods and to establish a framework for
extending this initial set as new data structures and operations are added. The purpose
of these kernel routines is to provide the primary foundation for the User Level Sparse
BLAS described in [9], i.e., to the extent possible, the User Level Sparse BLAS will be
written using kernels from the sparse BLAS toolkit.

The ultimate goal is to eventually have the Sparse BLAS Toolkit become a de facto
standard in much the same as the dense BLAS. We envisage that hardware vendors and
software developers will provide optimized versions of (some) the kernel routines presented
here as appropriate for the targeted scientific applications and hardware platforms.
Application developers can then, via calls to the User Level Sparse BLAS, attain high
performance, without code modifications, on a wide variety of architectures.

1.2 Deliverables

The final products of this proposal will be delivered in two phases. The first product will
be a basic set of kernels (called the Basic Sparse BLAS Toolkit). The second product
will be an extended set of kernels and a full test suite for all kernels (called the Extended
Sparse BLAS Toolkit). The motivation for doing this is to allow delivery of the Basic
Sparse BLAS Toolkit as soon as possible.

The Basic Sparse BLAS Toolkit includes kernels for computing for sparse matrix-dense
matrix product and solution of sparse triangular systems for COO, CSC, CSR, BCO,

BSR, BSC and VBR data structures. The Extended Sparse BLAS Toolkit includes all
other kernels described below. Specifically, it contains sparse matrix-dense matrix product
and solution of sparse triangular systems for the rest of the supported data structures, he
right permutation of a sparse matrix and the check for the integrity of a sparse matrix
representation as described in this proposal.

All software is written in C in such a way that the routines are easily callable from Fortran,
C or C++.

1.3 General Overview

In the remainder of this proposal we define the details of the Sparse BLAS Toolkit. In
Section 2 we define the basic operations, independent of data structures. We also discuss
our naming and argument conventions. Thus, this section defines the interfaces for the
current set of routines in the Sparse BLAS Toolkit and also provides a framework for
future extensions.

In Section 3 we define the supported data structures in detail. The precise definition of
data structures is very important for this proposal since many varieties of the basic data
structures exist. In effect, this proposal is attempting to standardize the definition of these
data structures.

Section 4 discusses our rationale for the design. In this section we attempt to justify what
is, and is not, included in our proposal. We also attempt to illustrate some of the intended
uses for these kernels. Finally, in Section 5 we present some issues which are open for
further discussion.

2 Scope of the Sparse BLAS Toolkit

The present scope of the Sparse BLAS Toolkit covers matrix-matrix product operations,
the solution of triangular systems with multiple right-hand-sides, permutations of sparse
matrices, and the integrity check of a sparse matrix representation. More precisely we
have:

1. Matrix-matrix products:
C + aAB + gC
C + aATB +3C

2. Solution of triangular systems (supported for all but the COO and BCO data
structures):
C + aDA'B+C

C + aDA B + gC
C «+ aA™'DB + 3C
C«+ aA TDB+psC

3. Right permutation of a sparse matrix (presently for JAD data structure only):
A<+ AP
A« APT

4. Integrity check of a sparse matrix representation:

(NERR) + 4

where « and f are scalars, B and C are rectangular matrices, D is a (block) diagonal
matrix, and A is sparse matrix. The sparse matrix A can be stored in one of a variety
of sparse data structures as described in Section 3. NERR is the integer value which
returns information about the integrity of a sparse matrix representation. Each of the
above operations is available for single and double precision, real and complex data as
appropriate.

2.1 Naming Conventions for Sparse BLAS Toolkit

Each Sparse BLAS Toolkit subroutine has a six-character name that is a function of
the data type, the data structure of the sparse matrix and the type of operation. More
precisely, each name is of the form XYYYZZ where

e X indicates the data type:

— S - Single-precision real
— C - Single-precision complex
— D - Double-precision real
— 7 - Double-precision complex
e YYY indicates the data structure of the sparse matrix: (Note: This list may change.
See Section 3.)

— Point entry:

* COO - Coordinate
* CSC - Compressed sparse column
* CSR - Compressed sparse row
* DIA - Sparse diagonal
ELL - Ellpack/Itpack
JAD - Jagged diagonal
SKY - Skyline
— Block entry:
x BCO - Block coordinate

* BSC - Block compressed sparse column

*x

*x

*x

* BSR - Block compressed sparse row
* BDI - Block sparse diagonal

2.2

* BEL - Block Ellpack/Itpack
* VBR - Variable block compressed sparse row

77 indicates the type of operation:

— MM - Matrix-matrix product
— SM - Solution of a triangular system with multiple right-hand-sides

— RP - Right permutation of a sparse matrix (presently for JAD data structure
only)

— CK - Integrity check of a sparse matrix representation.

Argument Conventions for Sparse BLAS Toolkit

The argument conventions follow the spirit of the dense BLAS. The general order of
arguments is:

9.
10.

. Arguments specifying options.
. Arguments specifying problem dimensions.

. Input scalar associated with input matrices.

Description of sparse input matrices (args(A), described below).

. Description of dense input matrices.

. Input scalar associated with input-output matrix.

Description of input-output matrix.

. Error processing information.

Workspace.

Length of workspace.

In particular, we have

e Point entry matrix-matrix product:

XYYYMM(TRANSA, M, N, K, ALPHA, args(4), B, LDB, BETA, C, LDC,
WORK, LWORK)

e Block entry matrix-matrix product:

XYYYMM(TRANSA, MB, N, KB, ALPHA, args(4), B, BLDB, BETA, C, BLDC,
WORK, LWORK)

e Point entry solution of triangular system:

XYYYSM(TRANSA, M, N, UNITD, DV, ALPHA, args(A), B, LDB, BETA, C,
LDC, WORK, LWORK)

e Block entry solution of triangular system:

XYYYSM(TRANSA, MB, N, UNITD, DV, ALPHA, args(A), B, BLDB, BETA, C,
BLDC, WORK, LWORK)

e Right permutation of a sparse matrix:
XYYYRP(TRANSP, M, K, args(A),| IPERM,] WORK, LWORK)

e Point entry integrity check of a sparse matrix representation:
XYYYCK(TRANSA, M, K, args(A), NERR, WORK, LWORK)

e Block entry integrity check of a sparse matrix representation:
XYYYCK(TRANSA, MB, KB, args(4), NERR, WORK, LWORK)

2.2.1 Common Arguments

The argument TRANSA is an integer argument. The possible values are

e TRANSA - Indicates how to operate with the sparse matrix.

— 0 - Operate with the matrix (No-transpose).
— 1 - Operate with the transpose of the matrix.

— 2 - Operate with the conjugate transpose of the matrix.

2 is equivalent to 1 if the matrix is real.

The argument M is the number of rows in the matrix C, N is the number of columns in
C, and K is the number of rows in B. M and K are the row and column dimensions of A,
respectively, if TRANSA = 0 or the row and column dimensions of AT if TRANSA =1
or 2.

The argument MB is the number of block rows in the matrix C, and KB is the number
of block rows in B. MB and KB are the block row and block column dimensions of A,
respectively, if TRANSA = 0 or the block row and block column dimensions of A7 if
TRANSA =1 or 2. See Sections 3.4 and 3.5 for a full discussion of block entry matrices.

Negative or zero dimensions are allowed. However, if M, N, K, MB, or KB is less than or
equal to zero, then no operations are performed.

The arguments ALPHA and BETA are both scalar inputs of the same data type as the
matrices. These operands correspond to o and 3, respectively, as defined above.

The arguments B and C are rectangular arrays with first dimension LDB and LDC,
respectively. If A is a constant block entry matrix, then BLDB and BLDC are the block
first dimensions of B and C, respectively. This implies for a block entry dimension of LB
that LDB = BLDB*LB and LDC = BLDC*LB. See Section 3.4 for details.

The argument WORK is an array of the same data type as A and of length LWORK. It
is used as scratch space for optimizing performance. The minimal value for LIWORK
is max(M,N) for point entry matrices and max(MB x LB * LB,N) in the block entry
case. The optimal value is returned in WORK(1) and can be obtained by reading
INT(WORK(1)).

2.2.2 SM Arguments

The argument UNITD is an integer argument indicating whether or not the diagonal
matrix D is unitary. The possible values for UNITD are

e 1 - Unitary diagonal matrix, i.e., D is the identity. In this case the argument DV is
ignored.

e 2 - Scale on the left (row scaling).

e 3 - Scale on the right (column scaling).

The argument DV is an array containing the diagonal entries of the (block) diagonal
matrix D. It is described in more detail in Section 3.4.

2.2.3 RP Arguments

A permutation P is represented by an integer vector IPERM such that IPERM(i) is equal
to the position of the only nonzero element in row 4 of P. For example, if

0
P = 0
1

O = O
S O =

then IPERM = (3, 1, 2). Note that, since IPERM is part of args(A) for the JAD data
structure, there is no need to repeat it as an argument. However, for future extensions,
we indicate where IPERM would be in the argument list.

The argument TRANSP is an integer argument. The possible values are

e TRANSP - Indicates how to operate with the permutation matrix.

— 0 - Operate with the matrix (No-transpose).

— 1 - Operate with the transpose of the matrix.

2.2.4 CK Arguments

The arguments NERR returns the number of errors detected in integrity check of a sparse
matrix representation. Errors are processed by an error handling routine which prints the
error information to standard error. The following checks are performed on the sparse
matrix representation:

e Valid arguments.

— Descriptors have valid values.
— Pointers have non-decreasing order.

— Indices are within problem dimensions.

— Floating-point values are valid, i.e., values represent finite floating-point number
on the given architecture.

e Structural integrity.

— Detects empty rows/columns or missing crucial entries, e.g., missing diagonal
entry for a triangular matrix with non-unit diagonal.

— Mismatch of descriptor and matrix graph, e.g., entries from the upper triangle
are stored in for a matrix which is declared to be lower triangular.

e Numerical integrity.

— Detects inappropriate zero values.

— Detects extremely small values.

e Reducibility check. Checks to see if the matrix is structurally reducible, i.e., the
matrix can be separated into two or more disjoint matrices. This step requires a
workspace of size two times the minimal value for LWORK. If LWORK is too small,
the reducibility check will not be performed.

2.2.5 Order of Arguments for args(A)

For all kernels, the data structure of A is determined by the YYY characters of the
subroutine name. The argument args(A), which is really a list of several arguments, will
vary with the data structure. The general order of arguments is:

1. Descriptor array.
2. Array containing the non-zero values (entries) of input matrix.
3. First dimension of values array (if shape of this array differs from index arrays).

4. Array(s) containing indices corresponding to the entries of input matrix. If more
than one index array:

(a) Arrays ordered in decreasing length.

(b) Arrays of same length are ordered with row indices first.
5. Length or first dimension of value/index arrays.
6. Array(s) containing pointers. If more than one pointer array:

(a) Arrays ordered in decreasing length.

(b) Arrays of same length are ordered with row pointers first, column pointers next
and diagonal pointers last.

7. Length or first dimension of pointer arrays.

8. Array(s) representing left and/or right permutations of A. If more than one
permutation array order left permutation array first.

Data Structure | args(A)

COO0 DESCRA, VAL, INDX, JNDX, NNZ
CSC DESCRA, VAL, INDX, PNTRB, PNTRE

CSR DESCRA, VAL, INDX, PNTRB, PNTRE

DIA DESCRA, VAL, LDA, IDIAG, NDIAG

ELL DESCRA, VAL, INDX, LDA, MAXNZ

JAD DESCRA, VAL, INDX, PNTR, MAXNZ, IPERM

SKY DESCRA, VAL, PNTR

BCO DESCRA, VAL, BINDX, BJNDX, BNNZ, LB

BSC DESCRA, VAL, BINDX, BPNTRB, BPNTRE, LB

BSR DESCRA, VAL, BINDX, BPNTRB, BPNTRE, LB

BDI DESCRA, VAL, BLDA, IBDIAG, NBDIAG, LB

BEL DESCRA, VAL, BINDX, BLDA, MAXBNZ, LB

VBR DESCRA, VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE

Table 1: args(A) for each data structure.

9. Block entry dimension.

The exact specification of args(A) for each supported data structure is in the following
Section 3.

3 Storage Conventions for Sparse Matrices

In this section, we will describe the data structures and corresponding args(A). Before
continuing, one should note that the list of data structures for A presented here is not
necessarily complete. We intend to add (or delete) items from this list if a justifiable
argument can be presented. In particular, we will add a data structure if it can be
shown that it offers a significant performance or algorithmic gains over the existing data
structures for an important architecture or class of problems. We would rather not add
data structures that are similar to the ones listed.

For example, there are several varieties of the compressed sparse row data structure
(CSR) with little or no difference in performance between the variations and the CSR
data structure presented here. Thus, we choose to avoid supporting all the variations.

Table 1 lists args(A) for all data structures. The following subsections describe the exact
meaning of the arguments for each data structure.

3.1 Definitions and Notation

For the following discussion of data structures, we define some terms and notation for an
m by k matrix A:

Entry - Any matrix coefficient which is handled explicitly (see [8]). There
are two basic types of entries discussed in this proposal:

e point - Each entry is a single scalar value. Typically, the point
entries of A are simply the non-zero elements of A.

e block - Each entry is a dense rectangular matrix stored column
by column. Block entries are derived from an assumed row and
column partition of the matrix A.

NNZ(A) - The number of point entries of a matrix A.

NZE(A) - The set of point entries of a matrix A.

NZI(A) - The set of row indices corresponding to the point entries of a matrix
A. The ordering of elements of NZI(A) should be the same as
NZE(A).

NZJ(A) - The set of column indices corresponding to the point entries of a
matrix A. The ordering of elements of NZJ(A) should be the same
as NZE(A).

A;x - The vector consisting of the elements from row ¢ of the matrix A.
As;j - The vector consisting of the elements from column j of the matrix
A.
diag;(A) - The vector consisting of the elements from a diagonal of A.

e i < 0 implies that diag;(A) is a vector with the first || elements
being unspecified or containing boundary information. The
next ¢ values of diag;(A) are from the |i|* diagonal below the
main diagonal where ¢ = min(m — |i|, k)

e i > 0 implies that the first ¢ elements, ¢ = min(m, k — 7), of
diag;(A) are from the i diagonal above the main diagonal
of A and the remaining elements are unspecified or contain
boundary information.

e i = 0 implies diag;(A) is the main diagonal of A.

PRF(A;x) - The set of elements from row i of A starting with the first point entry
in row ¢ up to and including the last point entry. Zero elements are
included.

PRF(A,;) - The set of elements from column j of A starting with the first point

entry in column j down to and including the last point entry. Zero
elements are included.

A - The matrix A with an assumed row and column partitioning.
BNNZ(A) - The number of block entries of a matrix A where A denotes A with
an assumed partition.
BNZE(A) - The set of block entries of a matrix A. Each block entry is a dense

rectangular matrix stored column by column.

10

BNZJ(A) - The set of block column indices corresponding to the block entries

~

of a matrix A. The ordering of elements of BNZJ(A) should be the

~

same as BNZE(A).

A;x - The block vector consisting of the elements from block row ¢ of the
partitioned matrix A.
A*j - The block vector consisting of the elements from block column j of
the partitioned matrix A.
A - The matrix PA where P is a permutation matrix.

Note: 1. The data structures presented here handle square or rectangular matrices, and
allow for zero rows and columns.

2. No order is assumed for storing the entries of the matrices except that for
triangular matrices, we assume that the main diagonal elements are stored in
proper relation to lower or upper triangle. For example, if a non-unit diagonal,
upper triangular matrix is stored in CSR format, then we assume that the
diagonal is the first entry in each row. This is necessary for efficient solution of
triangular systems.

3.2 Descriptor Arguments

The first argument in args(A) is DESCRA. It is a nine-element integer array which
describes the relevant characteristics of the matrix. The first three elements of DESCRA
describe the matrix structure and type of main diagonal. The fourth through ninth
elements of DESCRA can be used for data-structure-specific information. Presently
DESCRA(5) indicates the ordering of block entry elements for constant block entry
matrices (see Section 3.4) and DESCRA(6) is used in the case of the sparse diagonal
data structures (DIA and BDI), where it indicates whether or not the matrix is a stencil-
based operator. DESCRA(6) is also used by the COO, ELL, JAD, BCO and BEL data
structures to assert that there are no repeated indices in the index arrays. The possible
values of DESCRA (1)-DESCRA(3) are:

e DESCRA(1) - Matrix structure

— 0 - General

— 1 - Symmetric

— 2 - Hermitian

— 3 - Triangular

— 4 - Anti-symmetric (Skew Symmetric/Hermitian)

— 5 - Diagonal
e DESCRA(2) - Upper/Lower triangular indicator

— 1 - Lower

— 2 - Upper

e DESCRA(3) - Main diagonal type

11

— 0 - Non-unit

— 1 - Unit (diagonal elements are not stored)
e DESCRA(4) - Array base

— 0 - Zero array base (typical for C/C++)
— 1 - One array base (typical for Fortran)

Note:

1. For the solution of triangular systems, we only support DESCRA(1) = 3. We support
all combinations of data and matrix structures for matrix multiplication.

2. The diagonal type for block entry matrices refers to the block diagonal. Currently
we only support unit block diagonal for triangular solve routines. See Section 5.8
for a discussion of non-unit block diagonal entries.

3. If a matrix is declared to be anti-symmetric, we assume that if the diagonal entries
are stored then they are explicitly zero.

4. The SKY data structure is not supported for a general matrix structure (DESCRA (1)
=0).

5. If DESCRA(4) = 1 then addresses based index vector values, e.g., INDX, would be
assumed to start at one. Thus, a reference using INDX(i) = 1 would point to the
first element of an array. An array base of one is the default for Fortran programs.
DESCRA(4) = 0 would indicate that a reference using INDX(7) = 1 points to the
second element. An array base of zero is assumed for C and C++ programs.

The remaining arguments in args(A) vary and are described below. For precision and
conciseness, these arguments are described in terms of the notation defined above.
Examples are given for each data structure to illustrate the definition. Section 3.3 describes
each point entry data structure. Section 3.4 describes the BSR data structure and its
relationship to CSR. Other constant block size data structures are not discussed since
they are straight forward extensions of the point entry equivalents. In Section 3.5 we
describe the VBR data structure.

3.3 Point Entry Data Structures
3.3.1 COO - Coordinate

Three arrays are required for the COO format:

e VAL - A scalar array of length NNZ(A) consisting of NZE(A), the entries of A, in
any order.
e INDX - An integer array of length NNZ(A) consisting of NZI(A), the corresponding

row indices of the entries of A.

12

e JNDX - An integer array of length NNZ(A) consisting of NZJ(A), the corresponding
column indices of the entries of A.

We also need the argument NNZ = NNZ(A).

For example, let
11 0 13 14

0 0 23 24

A= 31 32 33 34
0 42 0 44

51 52 0 0 35

then one representation of A in COO format (assuming DESCRA(4) = 1) would be as
follows.

: (1)

o O OO

VAL = (11 51 31 32 34 52 13 23 33 14 24 42 55 44),
INDX (1 5 3 3 3 5 1 2 3 1 2 4 5 4,
JNDX = (1 1 1 2 4 2 3 3 3 4 4 2 5 4).

If A is symmetric (or Hermitian, triangular, or anti-symmetric) then we only need to store
the lower (or upper) triangle. In this case we have (for the lower triangle)

VAL = (11 51 31 32 52 33 42 55 44),
INDX = (1 5 3 3 5 3 4 5 4),
JNDX = (1 1 1 2 2 3 2 5 4).

Note: If A is Hermitian and the diagonal of A is stored, then we will assume that the
imaginary part of the diagonal is zero. Similarly, if A is anti-symmetric and the
diagonal is stored, we will assume it is zero.

For the COO data structure, DESCRA(6) is used to indicate whether or not INDX
has repeated values. In this case, if it is known that all columns of INDX have no
repeated values, then there is no danger of overwriting values when executed in parallel.
Performance improvements can be substantial if the user can guarantee there are no
repeated indices and indicates so by setting DESCRA(6) = 1. The possible values for
DESCRA(6) are:

e (0 - Unknown.

e 1 - No repeated indices.

3.3.2 CSC - Compressed Sparse Column

A matrix A is stored in the CSC format using four arrays.

e VAL - A scalar array of length NNZ(A) consisting of the entries of A:

VAL = (NZE(A,1), NZE(Ays), ..., NZE(A)).

13

e INDX - An integer array of length NNZ(A) consisting of the row indices of entries

INDX = (NZI(Ay1), NZI(Ass), . .., NZI(A.)).

e PNTRB - An integer array of length & such that PNTRB(j) — PNTRB(1) 4 1 points

to the location in VAL of the first element of NZE(A,;). If NZE(A,;) is empty then
set PNTRB(j) = PNTRB(j + 1).

e PNTRE - An integer array of length k£ such that PNTRE(j) — PNTRB(1) points to

the location in VAL of the last element of NZE(A,;). If NZE(A,;) is empty then
set PNTRE(j) = PNTRB(j).

For example, the CSC representation of the matrix in Equation 1 would be:

Note:

INDX
PNTRB
PNTRE =

VAL = (11 31 51 32 42 52 13 23 33 14 24 34 44 55),
= (1 3 5 3 4 5 1 2 3 1 2 3 4 5),
= (1 4 7 10 14),

(4 7 10 14 15),

1. The actual values in PNTRB and PNTRE are not important, only their relative

value from PNTRB(1). This allows greater flexibility for the user. In particular,
it is common to construct pointer arrays starting at 0. For Equation 1, we would
then define PNTRB and PNTRE as

PNTRB (0
PNTRE = (3

3 6 9 13),
6 9 13 14).
For the rest of the examples in this proposal, we use PNTRB(1) = 1, but this

is only for convenience.

. One can represent PNTRB and PNTRE for this example by using a single array

PNTRwhere
PNTR:(147101415),

in which case PNTRB(1:5) = PNTR(1:5) and PNTRE(1:5) = PNTR(2:6). In
this way, the change from a single PNTR array in previous proposals to the
two arrays PNTRB and PNTRE is compatible for user having only the PNTR
array.

. The two array approach to pointers offers much more flexibility than the

previous one array approach. For example, if we define the array

PNTRD = (1 4 9 12 13),

to point to the diagonal elements, then letting PNTRB= PNTRD we can
use just the lower triangular part of the general CSC representation without
modifying or copying the other data structures.

. A second example of increased flexibility is that there is no longer an implicit

storage association between contiguous columns. The columns can be specified

14

in any order. In particular, for the example above it is possible to put column
one as the last column stored:

VAL = (32 42 52 13 23 33 14 24 34 44 55 11 31 51),

INDX = (3 4 5 1 2 3 1 2 3 4 5 1 3 5),
PNTRB = (12 1 4 7 11),
PNTRE = (15 4 7 11 12),

If A is symmetric then we only need to store the lower (or upper) triangle. In this case
we have (for the lower triangle)

VAL = (11 31 51 32 42 52 33 44 55),
INDX = (1 3 5 3 4 5 3 4 5),
PNTRB = (1 4 7 8 9).
PNTRE = (4 7 8 9 10).

3.3.3 CSR - Compressed Sparse Row (Point entry form)

A matrix A is stored in the CSR data structure using four arrays.

e VAL - A scalar array of length NNZ(A) consisting of the entries of A:
VAL = (NZE(A1.), NZE(Az), - .., NZE(Amy)).

e INDX - An integer array of length NNZ(A) consisting of the column indices of entries
of A:
INDX = (NZJ (A1), NZJ(Asy), ., NZJ (Amy)).

e PNTRB - An integer array of length m such that PNTRB(7) —PNTRB(1) +1 points
to the location in VAL of the first element of NZE(A;,). If NZE(A;,) is empty then
set PNTRB(i) = PNTRB(i + 1).

e PNTRE - An integer array of length m such that PNTRE(:) — PNTRB(1) points
to the location in VAL of the last element of NZE(A;.). If NZE(A;.) is empty then
set PNTRE(i) = PNTRB(i).

For example, the CSR representation of the matrix in Equation 1 would be:

VAL = (11 13 14 23 24 31 32 33 34 42 44 51 52 55),
INDX = (1 3 4 3 4 1 2 3 4 2 4 1 2 5),
PNTRB = (1 4 6 10 12),
PNTRE (4 6 10 12 15).

If A is symmetric then we only need to store the lower (or upper) triangle. Considering
only the lower triangle of A, we have

VAL = (11 31 32 33 42 44 51 52 55),
INDX = (1 1 2 3 2 4 1 2 5),
PNTRB = (1 2 2 5 7).
PNTRE = (2 2 5 7 10).

Note: See the discussion on the use of PNTRB and PNTRE in the previous discussion of
the CSC data structure.

15

3.3.4 DIA - Sparse Diagonal (Point entry form)

Let LDA > min(m, k), and let NDIAG denote the number of non-zero diagonals of A.
Two arrays are required for the DIA format:

e VAL - A two-dimensional LDA-by-NDIAG scalar array consisting of the NDIAG
non-zero diagonals of A in any order.

e IDIAG - An integer array of length NDIAG consisting of the corresponding indices
of the non-zero diagonals of A in VAL. Thus, if IDIAG(j) = i then the j** column
of VAL contains diag;(A).

For example, let
1 0 13 0 0
21 0 0 24 O
A=1] 31 32 33 0 3 |,
0 42 0 44 O
0 0 53 0 55

then A would be stored in DIA format as follows.

* *x 11 13
x 21 0 24
VAL=] 31 32 33 35 |,
42 0 44 «
53 0 55 x

IDIAG:(—2 10 2).

For the DIA data structure, DESCRA(6) is used to determine how we should treat the ‘*’
elements. This is useful if the operator is truly grid-based and boundary values are stored
in the matrix data structure. If DESCRA(6) = 1, then the ‘*’ elements are accessed and
assumed to hold boundary value information from a stencil operator. Note also that in
this case elements of B are accessed which fall outside the normal domain. For instance,
in the above example, the normal domain of each column, B(*, j), of B is 1 through 5, but
the first ‘*’ element of VAL will be multiplied by B(-1, j) and added to C(1, j). The last
“** element will be multiplied by B(7, j) and added to C(5, j). If DESCRA(6) = 0, then
“*’ elements are unspecified and unused. If A is symmetric then we only need to store
diagonals from the lower (or upper) triangle of A.

3.3.5 ELL - Ellpack/Itpack (Point entry form)

Let MAXNZ denote the maximum of the number of entries in each row of A, i.e.,

MAXNZ = MAXNZ(A) = max NNZ(A;),
1<i<m
and let LDA > m. A matrix A is stored in the ELL format using two arrays.

16

e VAL - A two-dimensional LDA-by-MAXNZ scalar array such that row i of VAL
consists of NZE(A;,) padded by zero values if the length of NZE(A;.) is less than
MAXNZ.

e INDX - A two-dimensional LDA-by-MAXNZ integer array such that row ¢ of INDX
consists of NZJ(A;.) padded by the integer value i if NNZ(A;,) is less than MAXNZ.

For example, the ELL representation of the matrix in Equation 1 would be:

11 13 14 0
23 24 0 O
VAL=| 31 32 33 34 |,
42 44 0 0
51 52 55 0
1 3 41
3 4 2 2
INDX =1 2 3 4
2 4 4 4
1 2 5 5

If A is symmetric then we only need to store entries from the lower (or upper) triangle of
A.

Note: If A is lower triangular and non-unit, then all diagonal entries must be in the last
column of value and all padding entries must precede the diagonal.

For the ELL data structure, DESCRA(6) is used to indicate whether or not columns
of INDX have repeated values. This can be useful information when computing with
the transpose or symmetric form. In this case, if it is known that all columns of INDX
have no repeated values, then there is no danger of overwriting values when executed in
parallel. Performance improvements can be substantial if the user can guarantee there are
no repeated indices and indicates so by setting DESCRA(6) = 1. The possible values for
DESCRA(6) are:

e (0 - Unknown.

e 1 - No repeated indices.

3.3.6 JAD - Jagged Diagonal (Point entry form)

The JAD format requires the specification of a (non-unique) permutation matrix P which
permutes the rows of A in descending order of NNZ(A;.). As mentioned in Section 2.2.3,
a permutation is represented by an integer vector IPERM. Let A = PA be the permuted
matrix and let i’ denote the row of A corresponding to row i of A. Four arrays are needed:

e VAL - A scalar array of length NNZ(A) consisting of the entries of A. The first
element of VAL is the first element of NZE(A1,) followed by the first element of

17

NZE(As.) and so on through the first value of NZE (A, .) where m' is the last row
of A that has non-zero entries (usually 7’ = m). The m’ + 1°* element of VAL is
the second element of NZE(A;,) and so on.

e INDX - An integer array of length NNZ(A) consisting of the corresponding column
indices of the entries of A.

e PNTR - An integer array of length MAXNZ + 1, where MAXNZis as defined in
Section 3.3.5, such that PNTR(j) — PNTR(1) + 1 points to the location in VAL of
the j* element of NZE(A1,). PNTR(MAXNZ + 1) is set to the value NNZ(A) +
PNTR(1).

e IPERM - An integer array of length m such that 1 = IPERM(i’). IPERM is used
to determine the order in which rows of C' are updated. If IPERM(1) = 0, then we
assume by convention that P = I. One should note that IPERM represents PT.

For example, an appropriate permutation (and its inverse) for the matrix in equation 1
would be:

00100 01000
10000 00010
p=(oo0oo0o01]|,PP=|l10000],
01000 00001
00010 00100
and A would be:
31 32 33 34 0
11 0 13 14 0
A= 51 52 0 0 55
0 0 23 24 0

0 42 0 4 0
The elements of the JAD arrays would be:

VAL = (31 11 51 23 42 32 13 52 24 44 33 14 55 34),
INDX = (1 1 1 3 2 2 3 2 4 4 3 4 5 4),
PNTR = (1 6 11 14 15),

IPERM = (3 1 5 2 4).

If A is symmetric then we only need to store the lower (or upper) triangle. In this case,
P is computed for the triangular part and will typically be different than P in the general
case.

For the JAD data structure, DESCRA(6) is used to indicate whether or not there are
repeated values in INDX in the section of INDX starting at PNTR(i) and ending at
PNTR(i+1)-1, for each i = 1, MAXNZ. This can be useful information when computing
with the transpose or symmetric form. In this case, if it is known that each of these
sections of INDX have no repeated values, then there is no danger of overwriting values
when executed in parallel. Performance improvements can be substantial if the user can
guarantee there are no repeated indices and indicates so by setting DESCRA(6) = 1. The
possible values for DESCRA(6) are:

18

e 0 - Unknown.

e 1 - No repeated indices.

Symmetrically Permuted JAD To avoid permuting the rows of C' each time a JAD
kernel is called, one can explicitly permute the columns of A by calling

DJADRP(0, 5, 5, DESCRA, VAL, INDX, PNTR, MAXNZ, IPERM, WORK, LWORK).

This call will compute
33 31 0 32 34
13 11 0 0 14
AP =| 0 51 55 52 0
23 0 0 0 24
0 0 0 42 44

The elements of the JAD arrays for this fully permuted system would be:

VAL = (33 13 51 23 42 31 11 55 24 44 32 14 52 34),
INDX = (1 1 2 1 4 2 2 3 5 5 4 5 4 5),
PNTR = (1 6 11 14 15).

IPERM is no longer needed and an explicit zero value can be put in its place. Given the
fully permuted matrix A and replacing C' with PC and B with PB, we have an equivalent
system to the original A, B and C except in a permuted coordinate system.

3.3.7 SKY - Skyline (Point entry form)
A matrix A is stored in the SKY data structure using two arrays.

e If DESCRA(2) = 1, then we have:

— VAL - A scalar array consisting of:
VAL = (PRF (A1), PRF(As),...,PRF(Anyy))

— PNTR - An integer array of length m + 1 such that PNTR(7) — PNTR(1) + 1
points to the location in VAL of the first element of PRF(A;.). PNTR(m +
1) is set to the value NNZ(A) + PNTR(1). If PRF(A;.) is empty, then set
PNTR(i) = PNTR(i + 1).

e If DESCRA(2) = 2, then:
— VAL - A scalar array consisting of:

VAL = (PRF (A1), PRF(A,2),. .., PRF(A))

— PNTR - An integer array of length k£ + 1 such that PNTR(j) — PNTR(1) + 1
points to the location in VAL of the first element of PRF(A,;). PNTR(k +
1) is set to the value NNZ(A) + PNTR(1). If PRF(A,;) is empty, then set
PNTR(j) = PNTR(j + 1).

19

Note: This data structure is not supported for a general matrix structure (DESCRA(1) =
0).

For example, let

1 0 0 0 O
0 0 0 0 O

A= 31 32 33 0 O |,
0 42 0 4 O

51 52 0 0 55
then A would be stored in SKY format as follows (assuming DESCRA(2) = 1).

VAL = (11 31 32 33 42 0 44 51 52 0 0 55),
PNTR = (1 2 2 5 8 13).

3.4 Constant Block Entry Data Structures

Each of the above data structures allows the matrix to have block entries where each
entry of the matrix is an LB-by-LB dense block. Systems of this form typically arise when
there are multiple unknowns per gridpoint of a discretized partial differential equation.
By exploiting this property, we can reduce the amount of integer storage, increase the
performance of the kernels and allow numerical algorithms to perform analysis on the
block entries. Typically LB is a small number, less than ten, determined by the number
of quantities measured at each gridpoint, e.g., velocity, pressure, viscosity, etc. However,
there are cases where LB can be on the order of 100 as it is in the case of complex
chemically reacting flows.

There are two common ways to order the elements of block entries in memory. One is to
order the elements of each block entry contiguously, e.g., if LB = 2 then, for each block
entry, we store element (1,1) followed by element (2,1) followed by (1,2) and (2,2). Thus,
each block entry is stored in LB? contiguous memory locations. Another way is to store
the (1,1) elements of all block entries contiguously followed by all the (2,1) elements and
SO on.

The first ordering is particularly suitable for cache-based microprocessors. It is also the
natural data structure for performing analysis on the block entries since each entry is
a dense LB-by-LB matrix which could be passed, for example, to an LAPACK routine.
However, this ordering is typically very bad for vector computers, especially if LB is small,
since it forces vectorization with non-unit stride memory access. The second ordering
allows vectorization with unit-stride memory access, but loses the cache performance and
the ability to pass block entries to other subroutines as standard dense arrays.

Since both orderings of block entry elements appear to be of importance, we provide a
way for the user to choose the ordering. If DESCRA(5) = 0, then the sparse BLAS
toolkit routines assume the first ordering, i.e., the elements of each block entry are stored
contiguously. If DESCRA(5) = 1, then the second ordering is assumed.

Note that, for the sparse triangular solve routines, if the argument UNITD = 0O(non-
unit diagonal), then the argument DV contains the block entries of the main diagonal
of a block diagonal matrix. The dimensions of DV are determined by DESCRA(5). If

20

DESCRA(5) = 0, then the dimensions of DV are (LB,MB). Otherwise they are (MB,LB).
Also, the dimensions of B and C are (LB,BLDB,NB) and (LB,BLDC,NB), respectively, if
DESCRA(5) = 0, or (BLDB,LB,NB) and (BLDC,LB,NB) if DESCRA(5) = 1.

Although all of the point entry data structures discussed above have a constant block
entry analogue, we only choose to support some of them. Below we present the BSR data
structure which is the block entry form of the CSR data structure. The block entry forms
of the other data structures are analogous.

BSR - Constant Block Compressed Sparse Row Data Structure. Let | = LB
denote the dimension of the block entries of A, A denote A along with its row and column
partition and m; and k; denote the block row and column dimensions, respectively. Ais
stored in BSR format using three arrays. The order of elements depends on DESCRA(5).

e If DESCRA(5) = 0, we have:

— VAL - An array of dimension (!, BNNZ (A)) consisting of the block entries of
A:
VAL = (BNZE(Ay,), BNZE(Ay,), ..., BNZE(Ap,.)).-

— BINDX - An integer array of length BNNZ(A) consisting of the block column
indices of the block entries of A:

BINDX = (BNZJ (A1), BNZJ(As,), ..., BNZJ (Am,s))-

— BPNTRB - An integer array of length m; such that BPNTRB(i) —
BPNTRB(1) + 1 points to the location in BINDX of the the first block entry of

~ ~

BNZE(A;.). If BNZE(A;,) is empty then set BPNTRB(7) = BPNTRB(: + 1).
— BPNTRE - An integer array of length my; such that BPNTRE(:) —-BPNTRB(1)

~

points to the location in BINDX of the the last block entry of BNZE(A;,). If

~

BNZE(A;,) is empty then set BPNTRE(:) = BPNTRB(7).

For example, let
11 12| 0 0|15 16
21 22| 0 0]25 26
0 0(33 0|35 36

A=1 0 0|43 24|45 46 | (2)
51 52/ 0 0] 0 0
61 62| 0 0| 0 0

then, since [= 2, A would be stored in BSR format as follows.

VAL(1:2,1:2,1)=<; ;;) VAL(1:2,1:2,2)=<£ ;g)
VAL(1:2,1:2,3)=<Z§ 42>, VAL(1:2,1:2,4)=<22 ig)
VAL(1:2,1:2,5):<2} 2;>a

21

BINDX
BPNTRB
BPNTRE

The order of elements of VAL in memory would

-~ (132 31),

= (13 5)

= (35 6).
be:

(11,21,12,22,15,25, 16, 26, 33, 43, 0, 44, 35, 45, 36, 46, 51, 61, 52, 62)

e If DESCRA(5) = 1, we have:

— VAL - An array of dimension (BNNZ(A),1,1) consisting of the entries of A:

VAL = ((BNZE(A1,)(1,1)), (BNZE (As,)(1,
(2,1

~

1)),...,(BNZE(Apm,«)(1,1)),

(BNZE(A1.)(2,1)), (BNZE(A2.)(2,1)), ... ,(BNZE(Ap,.)(2,1)),

(BNZE(AI*)(I, l))a (BNZE(AQ*)(L l))a R (BNZE(Amb*)(la l)))a
where BNZE(A+,)(i,) denotes the (i, ;) elements of the block entries.

A~

— BINDX - An integer array of length BNNZ(A) consisting of the block column
indices of the block entries of A:

BINDX = (BNZJ(A1.), BNZJ (Ag,), ..., BNZJ (Am,.))-

e BPNTRB - An integer array of length m; such that BPNTRB(i) —- BPNTRB(1) + 1

points to the location in BINDX of the the first block entry of BNZE(A;s).

~

A~

If

BNZE(A;,) is empty then set BPNTRB(i) = BPNTRB(i + 1).

e BPNTRE - An integer array of length m; such that BPNTRE(:) — BPNTRB(1)

points to the location in BINDX of the the last block entry of BNZE(A,,).

~

~

If

BNZE(A;,) is empty then set BPNTRE(:) = BPNTRB(7).

The matrix A in Equation 2 would be stored in BSR format as follows.

11

VAL(1,1:2,1:2) = (o1
33

VAL(3,1:2,1:2) = (3
51

VAL(5,1:2,1:2) = (o1
BINDX

BPNTRB

BPNTRE

The order of elements of VAL in memory would

12 15 16
22), VAL(2,1.2,1.2)_<25 26),
0 35 36
44>, VAL(4,1.2,1.2)_<45 46>,
52
62)’
= (132 31),
= (13 5).
= (3 5 6).

be:

(11,15,33,35,51,21,25,43,45,61,12,16,0, 36,52, 22, 26, 44, 46, 62)

If A is symmetric then we only need to store the lower (or upper) triangle. If the diagonal
block entries are stored, we assume that the entire square block entry is stored.

22

3.5 Variable Block Entry Data Structures

It is often the case for problems with multiple unknowns per node, that the number of
unknowns per node will vary, generating a matrix with a block structure where the size of
the blocks varies correspondingly. If the variation in size is small, it may be advantageous
to make all block rows the same size by adding identity equations to smaller blocks.
However, often the the variation in size is large. For this case, we provide the variable
block compressed sparse row (VBR) data structure.

Variable Block Compressed Sparse Row Data Structure. We could consider a
variety of data structures to support problems with variable block matrices based on the
point entry data structures discussed in Section 3.3. However, since to our knowledge there
are few existing variable block data structures, we intend to restrict ourselves just in one
data structure: the variable block compressed sparse row (VBR) which is a generalization
of the supernodal data structures presented in [10, 11].

Formally we define the VBR data structure as follows. Consider an m-by-k sparse
matrix A along with a row partition P, = {i1,%2,...,%m,+1} and column partition
P. = {j1,72,--- ,jkb_H} such that i1 = j1 = 1, iy 41 = m+1, Jp, 01 = k+1, 1y <ipy1, Vp,
and j; < jg+1, Vg. We denote A, along with its assumed row and column partitions P,
and P., by A. Then we have the following equality

A Ap ... Alkb

- Ay A :

A= 21 22 ,
Ambl Ambkb

where Ay, is of dimension (ipy1 — ip)-by-(jgr1 — jq)-

If A;j # 0 then A;; is a block entry of A. In the VBR format, the block entries of A are
stored block row by block row. Each block entry is stored as a dense matrix in standard
column major form. One floating point array and three to five integer arrays are used to
store the matrix:

e VAL - A scalar array of length NNZ(A) consisting of the block entries of A:
VAL = (BNZE(A,.), BNZE(Asy,), ..., BNZE(Ap,.)),

where each block entry is a dense rectangular matrix stored column by column.

~

e INDX - An integer array of length BNNZ(A) + 1 such that the i-th element of
INDX points to the location in VAL of the the (1,1) element of the i-th block entry.
INDX(BNNZ(A) +1) is set to the value NNZ(A) + 1, the ending number of nonzero
point entries of A plus one.

e BINDX - An integer array of length BNNZ (A) consisting of the block column indices
of entries of A:

BINDX = (BNZJ(A1.), BNZJ (As,), ..., BNZJ (Am,.))-

23

Note:

RPNTR - An integer array of length mp + 1 such that RPNTR(:) — RPNTR(1) + 1
is the row index of the first point row in the i-th block row. RPNTR(m; + 1) is
set to m + RPNTR(1). Thus, the number of point rows in the i-th block row is
RPNTR(i + 1) — RPNTR().

CPNTR - An integer array of length kp + 1 such that CPNTR(j) — CPNTR(1) +1 is
the column index of the first point column in the j-th block column. CPNTR(k;+1)
is set to K+ CPNTR(1). Thus, the number of point columns in the j-th block column
is CPNTR(j + 1) — CPNTR(j).

BPNTRB - An integer array of length my, such that BPNTRB(:) — BPNTRB(1) + 1
points to the location in BINDX of the first block entry of BNZE(A;y). If BNZE(A;y)
is empty then set BPNTRB(7) = BPNTRB(i + 1).

BPNTRE - An integer array of length m; such that BPNTRE(:) — BPNTRB(1)
points to the location in BINDX of the last block entry of BNZE(A;.). If BNZE(A;y)
is empty then set BPNTRE(i) = BPNTRB(i).

1. For a general matrix (DESCRA(1) = 0), CPNTR can be different from RPNTR.
However, for a typical square matrix, CPNTR = RPNTR so only one copy
needs to be kept. For all other matrix types, RPNTR must equal CPNTR and
a single array can be passed for both arguments.

2. The array INDX is not essential for reconstructing the matrix. However, it
is essential for good performance of most matrix operations and should be
computed one time and kept for later use.

To illustrate the VBR data structure, consider the following matrix with the indicated
row and column partitioning:

4 2, 00010 0O0-1 1

D
Il
N
—_
w
S
Ut
—_
[en}
S
w
[\]
[en}
[en}

jes
[en
jes
[en
[en
[en
\V]
[en
-~
jes
jes

24

The sparsity pattern of A is

* 0 x 0 x%
X 0 « = 0 O
A= * % *x *x 0
0 0 « % 0
*x 0 0 0 =%
It is stored in VBR format as follows:
VAL = (4, 1, 2, 5 1, 2 -1, o0, 1, -1, 6, 2, -1, 1,
7, 2, 2, 1, 9 2 0, 35 2 1, 3, 4, 5; 10;
4, 3, 2; 4, 3, 0; 13, 3, 2, 4, 11, 0, 2, 3,
708, =2, 4, 3; 25, 8 3, 12),
INDX = (1, 5, 7, 11, 20, 23, 25, 28, 29, 32, 35, 44, 48, 52
BINDX = (1, 3, 5 2, 3, 1, 2, 3, 4, 3, 4, 1, 5),
RPNTR = (1, 3, 6, 7, 10, 12),
CPNTR = (1, 3, 6, 7, 10, 12),
BPNTRB = (1, 4, 6, 10, 12,).
BPNTRE = (4, 6, 10, 12, 14).

If A is symmetric (or Hermitian, triangular, or anti-symmetric), then we only need to
store the block diagonal and block lower (or upper) triangle. If the diagonal block entries
are stored, we assume that the entire square block entry is stored.

4 Rationale for Sparse BLAS Toolkit Design

In this section we discuss the reasons for our design. We believe there is little argument
about the need for what we propose here. However, one may reasonably argue that there
are other important kernels omitted. One may also argue with the details of our sparse
matrix data structures and which data structures are supported or unsupported. We
are aware of these issues and are willing to make changes if necessary. In the following
Section 5 we list and discuss issues that we believe to be open for further review.

4.1 Emphasis on Higher-level Functionality
We have chosen to emphasize a very high level of functionality in this proposal, i.e., we
have specified level-3 BLAS operations on block entry matrices. As we see it, the negative

aspects of this are:

e For users who want to compute a simple sparse matrix vector product, these general
interfaces might seem somewhat cumbersome.

25

e To provide a complete, optimal implementation of each of these kernels requires a
substantial amount of effort.

The positive aspects are:

e There are fewer user-callable routines. By combining level-2 and level-3 operations
we have reduced the number of routines by a factor of two.

e There is a greater opportunity for high performance. Users who can exploit level-3
operations and have block entry matrices can achieve significant performance gains.

e Users are encouraged to think in terms of higher-level operations.

4.2 Language Independent Specifications

We believe that the current proposal addresses all major issues related to ease-of-use from
Fortran, C and C++. The latest changes of replacing PNTR (BPNTR) with PNTRB and
PNTRE (BPNTRB and BPNTRE) and allowing for zero or one based arrays eliminated
the know complaints.

4.3 Choice of Data Structures

Each of the data structures we propose is intended to support an important class of
problems or algorithms. Below we list each point entry data structure and one or more of
its intended uses. The intended uses for block entry data structures are analogous with
added property that we exploit the property of multiple unknowns per gridpoint or related
properties as mentioned in Section 3.4.

e COO - Coordinate: Most flexible data structure when constructing or modifying a
sparse matrix.

e CSC - Compressed sparse column: Natural data structure for many common
matrix operations including matrix multiplication and constructing or solving sparse
triangular factors.

e CSR - Compressed sparse row: Natural data structure for many common matrix
operations including matrix multiplication and constructing or solving sparse
triangular factors.

e DIA - Sparse diagonal: Particularly useful for matrices coming from finite difference
approximations to partial differential equations on uniform grids.

e ELL - Ellpack/Itpack: Appropriate for finite element or finite volume approximations
to partial differential equations where elements are of the same type, but the gridding
is irregular.

e JAD - Jagged diagonal: Appropriate for matrices which are highly irregular or for
a general-purpose matrix multiplication where the properties of the matrix are not
known a priori.

26

e SKY - Skyline: Particularly well suited for Cholesky or LU decomposition when
no pivoting is required. In this case, all fill will occur within the existing non-zero
structure.

4.4 Choice of Functionality

Below we discuss our motivation for each basic operation we chose. We realize that there
are many other important operations and plan to implement more in the future. See
Section 5.11 for specific future plans.

4.4.1 Matrix-Matrix Product and Solution of Sparse Triangular System

We believe there is little need to justify the first two operations which are supported in
the Sparse BLAS Toolkit since sparse matrix-dense matrix product and the solution of
a sparse triangular system are the primary computational kernels in many sparse linear
equation and eigensystem solvers.

4.4.2 Right Permutation of a Sparse Matrix in JAD Format

The right permutation of a sparse matrix is necessary in cases where the rows of A were
already permuted in the process of storing A in the sparse data structure. For example,
if A is stored in JAD format, then the rows of A are ordered by decreasing number of
entries. If the corresponding right permutation is not applied, then the result matrix, C,
from a call to DJADMM will not be ordered consistently with the input matrix B. By
permuting the columns of A and the rows of B outside the iteration loop, we can eliminate
this inconsistency. For example, consider the simple iteration loop:

do i=1, ...
Yy Az
T x+ay
end do

If the matrix H is such that A = PH for some permutation matrix P then, in terms of
the matrix H, the loop becomes:

do i=1, ...
y <+ Hx
y < Py
< x+ay
end do

The additional permutation Py in each iteration could significantly affect efficiency. By
performing an explicit right permutation, we can eliminate permutations from the iteration
loop as follows:

27

z+ PTg

H+ HP

do i=1, ...
y<4+ Hx
T x+ay

end do

T ¢+ Pz

4.4.3 Check for Validity of Sparse Matrix Representation

Because of the potential large size of sparse problems and the complexity of sparse matrix
data structures, it is very useful to have the capability to perform some kind of check on
the sparse matrix representation. The checking routines presented here make no rigorous
attempt to determine the numerical stability and, thus, are not fail-safe. However, they
do improve the probability of finding and correcting most programming errors.

4.5 Use on a Distributed Memory Machine

Clearly the proposal presented here is intended for a shared memory programming
environment. However, one can easily use these kernels on distributed memory machines
in a natural way. Consider the MM operation and partition A, B, and C so that each
processor owns the same subset of rows of each array. Let A;, Bf, and C; denote the
portion of A, B, and C, respectively, on the i** processor. Let D; denote the set of row
indices that reside on processor i. Let B] denote elements of B which are not on processor
i but are reached to by A;. Finally, further decompose each A; into A, the portion of
A; that reaches to B!, and A7, the portion of A; that reaches to Bf. Then a general
distributed MM algorithm is as shown in Figure 1. Note that both computation steps can
be performed using the MM kernels presented in this proposal. These kernels are also very
useful for domain decomposition algorithms where all work in the inner iterations is done
locally.

5 Open Issues

In this section we present a list of open issues. Certainly there are others which we have
omitted, so this list will change with each revision.

5.1 Language Incompatibilities

Fortran Character Variables The original version of this proposal made extensive
use of character variables (see [14]). This was motivated by the precedent established
by the dense BLLAS and because of the improved ability to read the Fortran calls to the
toolkit kernels. However, in the interest of making the interface more accessible from other

28

GDMM (D, A, B,C) Algorithm.

Setup Phase (Performed only once)
Do Parallel All D;::=0,...,#PFEs
Distribute A; Bé and C;.
Transform A; into Aé and A7.
End Parallel Do

Compute Phase

Do Parallel All D;::=0,...,#PEs
Obtain B] from remote processors.
NO BARRIER
Compute C; = 3C; + a AL B!
BARRIER
Compute C; = C; + oA} B]

End Parallel Do

Figure 1: General Distributed Sparse Matrix-Dense Matrix Product Algorithm

languages, especially C, we have eliminated character variables and replaced them with
less intuitive, but easier to use integer variables.

5.2 Omission of Rank Updates

The dense BLAS support rank updates of a matrix, e.g., A < A + azy’. This operation
is not useful if A is sparse since the update, zy’, is dense. It would be possible to do an
implicit rank update in the sense that we never really form the updated matrix A, but
instead keep A, z and y. However, we have not seen any reason for doing this since it is
possible to use a combination of sparse and dense BLAS to perform this operation. For
example, to compute w = (A + zy”)z we first compute w = Az using a sparse BLAS
kernel, then we compute v = y” z using the level-1 BLAS routine DDOT. Then we finally
update w = w + yz using the level-1 BLAS routine DAXPY.

5.3 Omission of SIDE

In the specification of the dense BLAS, the SIDE argument is used to indicate whether
the operand matrix A is to the left or right of its associated operand. We assume that the
sparse operand A always appears on the left of its associated operand. Thus, the SIDE
argument is unnecessary.

29

5.4 Minimal support for pre-processing

In many cases, high-performance implementations of the Sparse BLAS Toolkit kernels will
require some pre-processing that should be done only once. Repeated calls to a Sparse
BLAS Toolkit kernel for a fixed matrix A would then use this pre-processed information to
achieve better performance. In this proposal, there is minimal support for pre-processing.
We include only one work array. However, because we believe that addressing these
issues is not within the scope of this proposal, we hesitate to add much more support for
pre-processing. Also, users should not need to be concerned about these implementation-
specific details. The drawback is that some types of pre-processing may be difficult to
implement.

5.5 Omission of MSR, MSC and Other Data Structures

The modified sparse row (MSR) and modified sparse column (MSC) data structures (see
SPARSKIT User Guide [18]) are popular data structures and were originally supported in
this proposal. Also, other data structures might be very useful. However, in the interest of
having a small set of supported data structures, we have chosen to avoid data structures
with similar performance characteristics.

Note: Matrix multiplication and the solution of triangular systems with MSR (and MSC)
can be express using a combination of the DIA and with CSR (and CSC) with
modification of the user’s data structure.

5.6 Details of Constant Block Data Structures

The block data structures presented here are only one version and they differ in detail
from those presented in [18]. Several questions arise:

1. Do we need to support both orderings of block entry elements? Presently we allow A,
B and C to have dimensions of A(LB,LB,NNZ), B(LB,BLDB,*) and C(LB,BLDC,*)
(contiguous) and A(NNZ,LB,LB), B(BLDB,LB,*) and C(BLDC,LB,*) (non-
contiguous). Can we get by with only one?

2. Presently the BINDX BPNTRB and BPNTRE arrays correspond to the block entries
of the matrix. However, they could also correspond to the scalar elements by pointing
to the (1,1) scalar element of each block. Compared with the present ordering
scheme, this would not affect BPNTRB and bpntre but, for the matrix in Equation 2
with DESCRA(5) = 0, BINDX as presented in Section 3.4 would become

BINDX = (15 3 5 1).

5.7 Variable Block Column Data Structure

Following the definition of the VBR structure, it is easy to define the variable compressed
block column (VBC) data structure, i.e., blocks are stored block-column-by-block-column,

30

and the point entries are stored column-by-column within one block. One possible
advantage of the VBC structure is that it could accelerate the matrix-vector (matrix-
matrix) multiply operations on vector machines since the columns are longer in the VBC
format. However, one needs to compute the leading dimensions of the columns. Our
experience tells us that the drawback may overshadow the advantage in many cases.
Therefore, we are not considering the VBC data structure in the current proposal, and
will leave it as an open issue in the future.

5.8 Non-unit Block Diagonal Entries for Triangular Matrices

Currently we do not allow non-unit block diagonal entries for triangular matrices. This
is because we are not sure how to invert these blocks when performing a block triangular
solve. We see several possibilities: each diagonal block has the LU factorization of the
block, or each has the explicit inverse, or each has some other factorization. Furthermore,
we believe it is more convenient to keep the block diagonal separate, e.g., instead of using
incomplete block LU we can use incomplete block LDU. Because of the possibilities and
because of the support for block diagonal matrices we do not see the value in supporting
non-unit block diagonal entries for triangular matrices.

5.9 Work Arrays and Dimensions

To facilitate optimization, we return in WORK(1) an integer in floating point form which
is the optimal value for LWORK. Thus, setting LWORK = INT(WORK(1)) will allow
optimal performance from the kernel. This convention is used in LAPACK but we are
open to other techniques. Our primary doubt about this approach is that the range of
integers that we can express in floating point form is smaller than the standard range of
integers if WORK and LWORK have the same element size.

5.10 Structurally-symmetric Nonsymmetric Matrices

Some nonsymmetric problems have a symmetric nonzero pattern which could be exploited
in some of the routines presented here, e.g., matrix-matrix multiplication for the CSR
data structure. In this case, it would be possible to store the structure for only the lower
triangle of this type of matrix and the values for the entire matrix. It is possible to do this
even under the constraints of the existing routines by making two calls, one for the lower
triangle (in CSR format) and one for the upper (in CSC format) using the same integer
vectors in both cases. There would be some improvement in performance by processing
both the lower and upper triangle simultaneously, but it brings with it some complications
to the user interface. At this time, we are not planning to support this capability.

5.11 Future Work

During the development of this proposal several other basic operations and data structures
were considered for inclusion. In particular, there are three topics that are not discussed

31

here which we believe are important and should be presented in later working notes. They
are as follows.

5.11.1 Sparse Matrix Update Kernel

A preliminary version of this proposal included a kernel for updating a sparse matrix.
This operation is of the form
A+ A+ad

where A is a sparse matrix stored in any of the supported data structures and A’ is another
sparse matrix stored in one of a subset of the supported data structures. We consider this
kernel to be very useful in the assembly of a sparse matrix and in converting from one
data structure to another. However, at this point, we are not certain about the feasibility
of the implementation of this kernel and must study the problem further before proposing
it.

5.11.2 General Sparse Permutation Kernels

Presently we support only one sparse permutation kernel, the right permutation of the
JAD data structure. This is necessary for the reasons presented in Section 4.4.2. However,
left and right permutations of sparse matrices can be useful in a more general context
(see [13]).

5.11.3 Sparse Matrix-Sparse Matrix Multiplication

Sparse matrix times sparse matrix multiplication is a basic kernel for constructing
incomplete Cholesky and ILU preconditioners. We are considering kernels for this
operation for a restricted set of data structures. See [2] for details.

6 Acknowledgements

Many people were of great help in the development of this proposal. In particular, we thank
Ramesh Agarwal, Fernando Alvarado, Ed Anderson, Steve Ashby, Craig Douglas, lain
Duff, Fred Gustavson, Bill Harrod, David Kincaid, Michele Marrone, Giuseppe Radicati,
Youcef Saad, Qasim Sheikh, Phuong Vu, Chao Yang, and Alex Yeremin.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’
Guide. STAM Pub., 1992.

[2] Randolph E. Bank and Craig C. Douglas. Sparse matrix multiplication package
(SMMP). Advances in Computational Mathematics, 1, 1993.

32

[3]

[4]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Richard Barrett, Michael Berry, Tony F. Cahn, James Demmel, June Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Rharles Romine, and Henk van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.
STAM, 1993.

David S. Dodson, Roger G. Grimes, and John G. Lewis. Sparse extensions to the
FORTRAN basic linear algebra subprograms. ACM Transactions on Mathematical
Software, 17(2):253-263, June 1991.

J. J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK Users’ Guide. STAM
Pub., 1979.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Tain Duff. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software,
16(1):1-17, March 1990.

J.J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended set of fortran
basic linear algebra subprograms. A CM Transactions on Mathematical Software, 14,
1988.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Monographs on Numerical Analysis. Oxford University Press, New York, 1986.

Tain Duff, Michele Marrone, and Giuseppe Radicati. A proposal for user level sparse
BLAS. Technical Report TR/PA/92/85, CERFACS, December 1992.

Elegant Mathematics, Inc., Bothell, Washington. The EM Symmetric Sparse
Supernodal Format, 1993.

Elegant Mathematics, Inc., Bothell, Washington. The EM Unsymmetric Sparse
Supernodal Format, 1993.

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in Matlab:
Design and implementation. SIAM J. Mat. Anal., 13(1):333-356, January 1992.

Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM Transactions on Mathematical Software, 4(3):250-269,
1978.

Michael A. Heroux. A proposal for a sparse BLAS toolkit. Technical Report
TR/PA/92/90, CERFACS, December 1992.

Mark T. Jones and Paul E. Plassmann. BlockSolve v1.1: Scalable library
software for the parallel solution of sparse linear systems. Technical Report ANL-
92/46, Mathematics and Computer Science Division, Argonne National Laboratory,
December 1992.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms
for fortran usage. ACM Transactions on Mathematical Software, 5, 1979.

Thomas C. Oppe and David R. Kincaid. Are there iterative BLAS? Technical report,
Center for Numerical Analysis, The University of Texas at Austin, February 1990.

33

[18] Youcef Saad. SPARSKIT: a basic tool kit for sparse matrix computations. Preliminary
Version.

[19] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler. Matriz Eigensystem Routines — EISPACK Guide, volume 6 of Lecture
Notes in Computer Science. Springer—Verlag, New York, second edition, 1976.

[20] Barry F. Smith and William D. Gropp. The design of data-structure-neutral libraries
for the iterative solution of sparse linear systems, 1993. Submitted to SIAM J. Sci
Comput.

34

