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Abstract - In this paper a new hierarchical distributed
genetic algorithm is proposed for image segmentation.
Firstly, a technique of histogram dichotomy is proposed
to explore the statistical property of input image and
produce a hierarchical quantization image. Then a
Hierarchical distributed genetic algorithm (HDGA) is
imposed on the quantized image to explore the spatial
connectivity and produce final segmentation result.
HDGA is a major improvement of the original
Distributed Genetic Algorithm (DGA) and Multiscale
Distributed Genetic Algorithm (MDGA) in four aspects:
(1) HDGA does not require the a priori number of image
regions, however it can effectively and adaptively
controls the segmentation quality; (2) the chromosome
structure is revised from the original label(multilabel)-
condition-fitness format to a more compact (storage-
efficient) label-fitness format; (3) the fitness function is
revised to utilized the spatial connectivity, but not the
original "reconstruction" error; (4) three revised
genetic operations are presented to make the algorithm
computation-efficient. Our experiments give proofs for
the advantages of HDGA.

1 Introduction

Image segmentation is the process by which an image
is segmented into a group of homogeneous regions. It is the
front-end processing stage in image/video processing
systems. Genetic algorithms have been applied to this
problem according to a variety of principles (Bhandarkar
and Zhang, 1999). Distributed genetic algorithm (DGA)
(Andrey and Tarroux, 1994) was proposed for parallel
image segmentation without a priori assumption of image,
except the number of segmentation regions. The main idea
of DGA is a simplified classifier system where the labeling
function is implemented as a set of binary-coded production
rules. Each image pixel in DGA has a three-segment
chromosome: label-condition-fitness. The label of each
pixel is iteratively modified using the genetic algorithm.
Multiscale distributed genetic algorithm (MDGA) (Long,
Zheng, and Zhang, 1998) was presented to segment images
from coarse to fine. The chromosome structure is
multilabel-condition-fitness, where multilabels are used to
code the multilayer structures of regions. Unfortunately,
both DGA and MDGA need the predefined image region
number, which is usually not available before segmentation.
At the mean time, DGA and MDGA often produce

unpredictable poor results because of the improper
initialization. Therefore a more powerful genetic algorithm
is required. In this paper we propose a Hierarchical
Distributed Genetic Algorithm (HDGA) based on grayscale
image histogram dichotomy. In section 2 the technique of
hierarchical histogram dichotomy is proposed and proved.
In section 3 the HDGA is proposed with newly designed
chromosome, fitness function and genetic operations. In
section 4 the experimental results are reported. Finally the
discussion and conclusion are given.

2 Hierarchical Histogram Dichotomy

We regard the original grayscale image I as a union of
non-overlapping homogeneous regions. Notice that image
quantization has been recognized as globe image
segmentation (Scheunders, 1996), and the initialization is
critical to the performance of DGA. Hence we propose the
HDGA as a two-stage image segmentation paradigm, which
is composed of histogram dichotomy (for image
quantization and genetic algorithm initialization) and an
improved genetic algorithm (for image segmentation).

Instead of the usual Lloyd-Max quantization method,
we produce the hierarchy of image regions with histogram
dichotomy. The image histogram is repeatedly
dichotomized into hierarchical continuous intervals until
every interval has a pixel-by-pixel Mean square error (MSE)
less than a given threshold Tσ. The histogram MSE on the
gray level interval [d, u] is defined as:
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where d and u are lower and upper limits of the current
histogram interval, the function P(k) is the normalized
grayscale histogram (ΣkP(k)=1), r is the quantized gray
level of the histogram interval, as defined in eqn(2):
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When the MSE of a histogram interval is larger than Tσ,
this interval will be split into two subintervals, whose sum
of MSE is minimized. That is, the interval division point
c[d,u] is chosen as:
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By the above method, a hierarchical tree of histogram
intervals can be obtained. Each histogram interval
corresponds to one or more image regions, which have the
internal approximate homogeneity in sense of minimal



MSE. It can be observed that the sum of interval MSEs in a
higher level is always smaller than that in the lower level.
This method is in accordance with the optimal image
quantization (Scheunders, 1996), however, the hierarchy of
histogram offers flexibility to control the quantization
quality, without a priori knowledge of image region
number.

Generally there are strong quantization noises,
especially in the slow varying areas of gray levels. In
addition, the spatial connectivity information in images is
not considered in image quantization. Hence we integrate
this histogram dichotomy technique into the following
HDGA paradigm.

3 Hierarchical Distributed Genetic Algorithm

In HDGA, a pixel (m,n) in the image has a
chromosome lm,n and each chromosome consists of two
parts: label bm,n and fitness fm,n. The genetic population
consists of all pixel chromosomes, therefore the population
has the same size as the image pixel number (this is the
meaning of the word "distributed"). The chromosome label
is defined as the pixel quantization level, and the
chromosome fitness is defined as:
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where Ωm,n is a neighbor area of the pixel (m,n), M and N
are image width and height, separately. For each pixel
chromosome, its label is initialized as the pixel gray level
from histogram dichotomy quantization.

Notice that the chromosome in HDGA is much simpler
than that of DGA and MDGA, while it can make full use of
the quantization result of histogram dichotomy. What's
more, the new fitness function defined in eqn.(4) can better
utilize the spatial relationship in image than the fitness
function in DGA and MDGA, where only the error between
the original image pixel and the current chromosome
condition is considered.

Three genetic operations of HDGA are designed:
(a) Selection: select the lp,q with the largest fitness fp,q

in Ωm,n to replace lm,n.
(b) Crossover: randomly cross over lm,n and lp,q, which

has the largest fitness fp,q in Ωm,n, and transform the
result to be one of these two parents according to
its discrimination to these parents.

(c) Mutation: randomly select one lp,q in Ωm,n to
replace the current chromosome lm,n. A small
mutation rate rm is defined.

Because of the simplified chromosome, HDGA differs
much to DGA: although the genetic selection operation in
HDGA is similar to the LTS operation in DGA, the genetic

crossover and mutation operations in HDGA are different
from those in the original DGA.

The whole process of HDGA, just like other genetic
algorithms, is organized based on the above three genetic
operations. For the ending condition, the total number of
chromosomes that do not change labels in the current
generation is counted and the unchanged rate ru is
calculated. If ru is larger than a preset threshold Tu in two
continuous generations, then HDGA stops. Otherwise a new
generation begins.

4 Experiments

The computer simulation is made on a database of
1000 images. These images belong to 5 categories: People-
children, People-male, Picture-frames, Business goods,
Vegetables & fruits. Each category has 200 true-color (24-
bit) 320×240 images. In our experiments each image is
converted to be 256 gray level (8-bit) image. A typical
image example is shown in Fig.1.

Parameters of HDGA are Tσ=76.8, Tu=0.9, Ωm,n=3×3
neighborhood of pixel (m,n), rm=0.001. For comparison, the
region number in DGA is chosen to be the final total
number of histogram intervals from HDGA histogram
dichotomy. Other DGA parameters are chosen to the same
as those of HDGA, or carefully adjusted to the best
according to Andrey and Tarroux (1994).

Fig.1 An example image for segmentation



Fig.2 The quantization intervals of HDGA and DGA

For the input image in Fig.1, the quantization intervals
of both HDGA and DGA are shown on the normalized
histogram in Fig.2. Because DGA employs a uniform
quantization (the equally distributed × row in Fig.2), it can
not make full use of the statistical information, and in most
cases, it will result in wrong segmentation. On the contrary,
HDGA slices the histogram into hierarchical intervals, each
of which has homogeneity in the sense of minimal MSE
(the unequally distributed * row in Fig.2.
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Fig.3 The hierarchy of histogram dichotomy
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Fig.4 The segmentation of different layer

The histogram interval hierarchy tree produced by
histogram dichotomy is shown in Fig.3. From top to bottom,
the hierarchy tree has four levels. For each tree node, the
first row is the interval division point and the second
bracketed row is the sum of MSEs of left and right intervals
divided by the division point. Note that the gray level range
is [0, 255].

In Fig.3, the intervals of each level are obtained from
the inorder traversal. For example, for level 3, the
histogram intervals are seen as {[0,58], [59,80], [81,119],
[120,149], [149,176], [177,217], [218,239], [240,255]}.

For each level in Fig.3, the image segmentation results
are shown in Fig.4. The left column images in Fig.4 are the
edges of quantization results of histogram dichotomy. The
right column images are the edge of segmentation after
HDGA. For the sake of visualization, all image region
edges are overlapped on the original input image. We see
that with the increase of histogram dichotomy level, HDGA
can segment the image in more details.

In Fig.5 the comparing image segmentation results of
HDGA (the level 4 in Fig.3 and Fig.4) and DGA are shown.
Fig.5(a) and (c) are the edges of the initial quantization
images of HDGA and DGA, respectively. Fig.5(b) and (d)
are the final segmentation image region edges. We see that
HDGA better segments the image than DGA. This seems to
be a natural outcome of the better initialization based on
histogram dichotomy. In addition, the role of genetic
algorithm can be seen by comparing Fig.5(a) and (b), as
well as Fig.5(c) and (d): the spatial relationship of image is



well utilized to remove small regions (quantization noises)
and produce clear segmentation edges.

(a) initial quantization image edges of HDGA

(b) final segmentation image edges of HDGA

 (c) initial quantization image edges of DGA

(d) final segmentation image edges of DGA

Fig.5 Segmentation results of HDGA and DGA

Table 1: The homogeneity of image regions

Category Average
Sσ[HDGA]

Average
Sσ[DGA] ]DGA[

]HDGA[

σ

σ

S

S

People-children 319.6175 401.8327 79.54%
People-male 310.6658 411.1724 75.56%
Picture-frames 284.7555 402.6727 70.72%
Business goods 280.6534 369.0727 76.04%
Vegetables &
fruits

310.6988 404.2918 76.85%

For quantitative comparison of the segmentation
quality, we can examine the homogeneity of final image
regions after segmentation. Sum of MSE over all image
segmentation regions, i.e. Sσ=Σσ2, is calculated as the index.
Table 1 gives the average results for HDGA and DGA on
the five categories of images, and the ratio of Sσ[HDGA] to
Sσ[DGA]. Clearly, the image regions produced by HDGA
has better internal coherence than those produce by DGA.
Typically Sσ[HDGA] is 20~30% less than Sσ[DGA], as
shown in the third column of Table 1.

The role of genetic algorithm in both HDGA and DGA
is quantitatively examined using the parameter rr, which is
the reduction rate of image region edge pixel number.
Because it is hard to count the accurate region number in an
image, the edge pixel number is used alternately. Note that
the genetic algorithms will not erase the large regions,
however will filter small regions. Hence with the decrease
of image regions, the total edge pixel number will
substantially reduce. This phenomenon can be recognized
in Table 2. So we see that genetic algorithms in both
HDGA and DGA play important roles in improving the
direct quantization segmentation results, -- and the mere
image quantization can not lead to significantly good



segmentation (e.g. the left column in Fig.4, and Fig.5(a) and
(c)).

Table 2: The rates of region edge pixel reduction

Category rr [HDGA] rr [DGA]
People-children 42~55% 40~51%
People-male 35~47% 48~55%
Picture-frames 38~50% 44~50%
Business goods 44~52% 50~56%
Vegetables & fruits 28~42% 35~62%

In Fig.6 the convergence speeds of HDGA and DGA
are compared for the image in Fig.1. Obviously HDGA has
a much faster convergence than DGA: usually HDGA just
needs 5 generation to attain the prior set accuracy Tu=0.9,
while DGA often needs tens of generations. Two main
causes are the better initialization and improvement of
genetic algorithm (i.e. refined genetic operations and fitness
function). In addition, even in one generation, HDGA needs
much less computation than DGA because the
simplification of chromosome structure and refinement of
genetic operations. In our experiments, it is also found that
typically the histogram dichotomy costs about 0.5 second
while the genetic algorithms often cost hundreds of seconds.
Thus the histogram dichotomy is computationally efficient
for HDGA.

5 Discussion and Conclusion

HDGA can take full advantages of the statistical
information and spatial information of an image in
segmentation, through histogram dichotomy and the
improved genetic algorithm. Experimental results show that
HDGA outperforms DGA in image quantization and
genetic algorithm initialization, computation efficiency and
convergence speed, and segmentation region homogeneity.

One apparent drawback of HDGA is due to the
histogram dichotomy. In the cases there are odd number of
gaussian distributed intervals on the histogram, the
histogram dichotomy may lead to error. However, this

problem is not impossible to be overcome because an
adaptive histogram multi-splitting technique can be
proposed to estimate the optimal histogram subintervals in a
given interval.

Fig.6 The convergence of HDGA and DGA
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