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Analytic evaluation of definite integrals

A frequent theme of experimental mathematics is the recognition of definite integrals
in terms of relatively simple closed-form expressions. Such integrals arise in:

¢ Ising theory of mathematical physics.

¢ Quantum field theory.

¢ “Box” integrals (e.g., average distances between points in n-cube).

¢ Random walk theory.



The PSLQ integer relation algorithm

Let (x,) be a given vector of real numbers. An integer relation algorithm finds
integers (a,) such that

a1x1 +asxrs+---+a,x, = 0

(or within “epsilon” of zero, where epsilon = 10 and p is the precision).

At the present time the “PSLQ” algorithm of mathematician-sculptor Helaman
Ferguson is the most widely used integer relation algorithm. It was named one of
ten “algorithms of the century” by Computing in Science and Engineering.

PSLQ (or any other integer relation scheme) requires very high precision (at least n
x d digits, where d is the size in digits of the largest a,), both in the input data and in
the operation of the algorithm.

1. H.R.P. Ferguson, D.H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.

2. D.H. Bailey and D.J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,”
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.



How PSLQ operates

PSLQ constructs a sequence of integer-valued matrices B,, that reduces the
vector y = x B,,, until either the relation is found (as one of the columns of B,), or
else precision is exhausted.

At the same time, PSLQ generates a steadily growing bound on the size of any
possible relation.

When a relation is found, the size of smallest entry of the vector y abruptly drops
to roughly “epsilon” (i.e. 10"°, where p is the number of digits of precision).

The size of this drop can be viewed as a “confidence level” that the relation is
real and not merely a numerical artifact -- a drop of 20+ orders of magnitude
almost always indicates a real relation.

PSLQ (or any other integer relation scheme) requires very high precision
arithmetic, both in the input data and in the operation of the algorithm:

. At least nd digits, where n is the dimension, and d is the size in digits of largest a,.



Decrease of log,,(min, |y,|) as a function
of iteration number in a typical PSLQ run
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Methodology for using PSLQ to
recognize an unknown constant o

1. Calculate a to high precision (e.g., 100 - 1000 digits). This is usually the most
expensive step.

2. Make a list of possible terms on the right-hand side (RHS) of a linear formula for
o, then calculate each of these n terms to the same precision as o.

3. Apply PSLQ to the (n+1)-long vector, using the same numeric precision as a.

4. When PSLQ runs, look for a sharp drop (at least 20 orders of magnitude) in the
size of the reduced y vector by, to a value near “epsilon.”

5. If no credible relation is found, try expanding the list of RHS terms.

Some related approaches:

1. If you suspect a is algebraic of degree n (the root of a degree-n polynomial with
integer coefficients), apply PSLQ to the (n+1)-long vector (1, o, a?, a3, ..., a").

2. If you suspect a is given by a multiplicative relation, take logarithms of a and the
list of constants, then apply PSLQ to the (n+1)-long vector.




Gaussian quadrature

Gaussian quadrature is often the most efficient scheme for regular functions
(including at endpoints) and modest precision (< 1000 digits):

/ fa)de =~ ;wjf(wj)

The abscissas (x;) are the roots of the n-th degree Legendre polynomial P,(x) on
[-1,1]. The weights (w,) are given by

—2
(n+ 1) P (25) Prya(z;)
The abscissas (x;) are computed by Newton iterations, with starting values

cos[m(j- 1/4)/(n+1/2)] Legendre polynomials and their derivatives can be computed
using the formulas Py(x) = 0, P,(x) =1,

(k+1)Piy1(x) = (2k+1)xPy(z) — kPy—1(z)
Pp(z) = n(@Pu(z) = Po-1(2))/(z* — 1)

D.H. Bailey, X.S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature schemes,”
Experimental Mathematics, vol. 14 (2005), no. 3, pg 317-329.
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The Euler-Maclaurin formula of
numerical analysis

[E(h)] < 2(b—1)(h/(2m))*™"* max |D*™F f(x)
a<zx<b
Here h = (b - a)/n and x; = a + jh; B,; are Bernoulli numbers; D™ f(x) is the m-th
derivative of f(x). The E-M formula can be thought of as providing high-order
correction terms to the trapezoidal rule.

Note when f(x) and all of its derivatives are zero at the endpoints a and b (as in a bell-
shaped curve), the error E(h) of a simple trapezoidal approximation to the integral
goes to zero more rapidly than any power of h.

K. Atkinson, An Introduction to Numerical Analysis, John Wiley, 1989, pg. 2809.

L ________________________________________________________________________________________________________________________________________________________|
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bell-shaped function




Tanh-sinh quadrature

Given f(x) defined on (-1,1), define g(t) = tanh (/2 sinh t). Then setting x = g(f) yields

/_ S@)de / Fo)gat ~ n S wif(ay),

where x; = g(hj) and w; = g'(hj). The x; and w; can be precomputed.

Since g'(t) goes to zero very rapidly for large t, the integrand f(g(f)) g’(t) typically is a
nice bell-shaped function for which the Euler-Maclaurin formula implies that the
simple summation above is remarkably accurate. Reducing h by half typically
doubles the number of correct digits.

We have found that tanh-sinh is the best general-purpose integration scheme for
functions with vertical derivatives or singularities at endpoints. It is also best at very
high precision (> 1000 digits), because the computation of abscissas and weights is
much faster than with Gaussian quadrature or other schemes.

1. D.H. Bailey, X.S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature schemes,”
Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329.

2. H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publications of RIMS,
Kyoto University, vol. 9 (1974), pg. 721-741.
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Original and transformed integrand

functions

Original integrand function on [-1,1]:

f(x) = —log cos (%)

Note the singularities at the endpoints.
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Transformed using x = g(t) = tanh (sinh {):
flg()g'(t) =
—log cos|m/2 - tanh(sinh ?)] (

cosh(t)
cosh(sinh t)?
This is now a nice smooth bell-shaped function,

so the E-M formula implies that a trapezoidal
approximation is very accurate.
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Regular function or not?

Plots of f(x) = sinP(xtx) T(p,x) (upper) and
its fourth derivative (lower), forp =3
(solid) and p = 3.5 (dashed). Here Cis
Hurwitz zeta function.

When p = 3.5, the function itself
appears completely regular, but the
fourth derivative blows up at both

endpoints.

\
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As a result, Gaussian quadrature works
very poorly for this function.

But tanh-sinh works fine. \ |
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A log-tan integral identity verified with
tanh-sinh quadrature

24 (™2 |tant

il log [0 VT = L_7(2) =

TNT Jrss tant — /7

i L S R S S
—|(tn+1)2  (Tn+2)2 (Tn+3)2  (Tn+4)? (Tn+5)?  (Tn+6)?

This identity arises from analysis of
volumes of knot complements in
hyperbolic space. This is simplest of
998 related identities.

We verified this numerically to 20,000
digits, using tanh-sinh quadrature on a
highly parallel computer. A proof was
known, but we weren’t aware of this at
the time.

D.H. Bailey, J.M. Borwein, V. Kapoor and E.
Weisstein, “Ten problems in experimental
mathematics,” American Mathematical Monthly,
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vol. 113, no. 6 sJun 2006!, pg. 481-409 .
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Integration of oscillatory functions on
semi-infinite intervals

¢ Many functions on a semi-infinite interval can be computed using Gaussian or
tanh-sinh quadrature by a simple change of variable — i.e., for integrals on [1,
infinity), use the transformation u = 1/t.

¢ Oscillatory functions on semi-infinite intervals are more challenging -- even tanh-
sinh fails for many such integrals.

¢ Some oscillatory integrals involving sin or cos can be handled using a technique
due to Ooura and Mori.

¢ For oscillatory integrals involving Bessel functions, we have used a scheme due
to Sidi, Lucas and Sloane: Divide integral into intervals [n &, (n+1)x] and then use
Sidi’'s mW scheme to extrapolate the value of infinite sum.

1. S.K. Lucas and H.A. Stone, “Evaluating infinite integrals involving Bessel functions of arbitrary order,”
Journal of Computational and Applied Mathematics, vol. 64 (1995), pg. 217-231.

2. T. Ooura and M. Mori, “Double exponential formulas for oscillatory functions over the half infinite interval,”
Journal of Computational and Applied Mathematics, vol. 38 (1991), pg. 353-360.
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Ising integrals from mathematical
physics

We recently applied our methods to study three classes of integrals that arise in the
Ising theory of mathematical physics — D, and two others:

> u3+1/u3)) U1 i

2
n' Uy,

5
n (uy + 1/“9)) “
2

/ / YWY by dits - - dt,
k%_uj

1<y <k<

where in the last line u, = ¢, t, ... t,.

D.H. Bailey, J.M. Borwein and R.E. Crandall, “Integrals of the Ising class,” Journal of Physics A:
Mathematical and General, vol. 39 (2006), pg. 12271-12302.
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Computing and evaluating C,

We observed that the multi-dimensional C,, integrals can be transformed to 1-D
integrals:

2" [°

Co = O tKD(t) dt

where K, is the modified Bessel function. In this form, the C, constants appear
naturally in in quantum field theory (QFT).

We used this formula to compute 1000-digit numerical values of various C,, from
which the following results and others were found, then proven:

Cl = 2
02 = 1
1 1
Cs = L_3(2) = n%% ((Sn +1)2 (3n+ 2)2)
04 — lC(S)

16



Limiting value of C,;:
What is this number?

The C, numerical values appear to approach a limit. For instance,

C1o24 = 0.63047350337438679612204019271087890435458707871273234 . ..

What is this limit? We copied the first 50 digits of this numerical value into the
online Inverse Symbolic Calculator (ISC):

http://isc.carma.newcastle.edu.au

The result was:

lim C,, = 2e 7
n—aoo

where gamma denotes Euler’s constant. Finding this limit led us to the asymptotic
expansion and made it clear that the integral representation of C, is fundamental.

17



Other Ising integral evaluations found
using high-precision PSLQ

Dy, = 1/3

Dy = 8+4r°/3 -27L_3(2)

D, = 47*/9—1/6 —7((3)/2

EFys = 6—8log2

Es = 10—2n% —8log2+ 32log*?2

E, = 22-82¢(3)—24log2+ 176log*2 — 256(log” 2)/3
+167% log2 — 2277 /3

Es = 42—1984Lis(1/2) + 1897 /10 — 74¢(3) — 1272¢(3) log 2

+40m%log® 2 — 6272 /3 4+ 40(7w2 log 2) /3 + 881log™* 2
+464 log® 2 — 40 log 2

where C is the Riemann zeta function and Li,(x) is the polylog function.

D,, D; and D, were originally provided to us by mathematical physicist Craig Tracy,
who hoped that our tools could help identify D;.

18




The Ising integral E,

We were able to reduce E;, which
is a 5-D integral, to this extremely
complicated 3-D integral:

We computed this integral to 250-
digit precision, using a highly
parallel, high-precision 3-D
quadrature program. Then we
used a PSLQ program to discover
the evaluation given on the
previous page.

We also computed D; to 500
digits, but were unable to identify
it. The digits are available if
anyone wishes to further explore
this question.

s [ )] o

1=y —2y)*(1 — 2)°(1 —y2)?(1 — 2y2)?

(= [4(z + 1)(zy + 1) log(2) (fz%j v 224y + 1)z 4+ 3)28 — 32 ((y2 +1) 22 4 4(y+
Dz+5)2° +y? (yly+ D22 +3 (32 +1) 22 +4(y+ D)z — 1) a* +y (2 (2 + 42
+5)y2 +4 (2 + 1) y+5z+4)2® + ((-32° — 42+ 1) y* —dzy + 1) 2° — (y(5z + 4)
+4)z = 1))/ [(z = 1)*(xy — 1)*(zyz = 1)°] + [3(y — 1)°y" (= — 1)%2%(y2
—1)22% +2y%2 (3(2 — 1)22%° + 2 (52° + 322 + 32+ 5) y* + (= — 1)z
(522 + 162 +5) y® + (32° + 327 — 2223 — 222 + 32+ 3) y? + 3 (-2 + 2% + 2
224 2—2)y+325+52% + 52+ 3) 2® +y? (7(z — 1)22495 — 223 (2% + 1527
+152 + 1) y° + 22° (—212" 4 62° + 142° + 62 — 21) y* — 22 (2° — 62" — 2727
—272% — 62+ 1) y® + (72° — 302° + 282" + 542° + 2822 — 302 + 7) y? — 2 (72°
+152% —62° — 622 + 152 + 7) y+ 724 —22% 4222 — 22+ 7) zt =2y (z3 (z3
=922 — 92 + 1) y® + 2% (72" — 142% — 1822 — 142 + 7) y° + 2 (72° + 142" + 3
224327+ 14z 4+ 7) gt + (2% — 142° + 32" + 8427 + 32 — 142+ 1) y® — 3 (32°
+62% — 28 fz2+6z+3)y2 — (924+14z3 71422+14z+9)y+23+722+7z
+1)2® + (22 (112 + 62° — 6627 + 62+ 11) 5 + 22 (52° + 132" — 2% — 27
+132 +5) y° + (112° + 262° + 442" — 662° + 442% + 262+ 11) y* + (62° — 4
2" — 662° — 662> — 4z +6) y® — 2 (332" + 22 — 222° + 22 + 33) y* + (62° + 26
22+ 262+ 6) y+ 1122 +10z + 11) z2 -2 (22 (523 +3224+ 32+ 5) >+ 2 (2224
+52% — 2227 + 52+ 22) y* + (52° + 52" — 262% — 262° + 52+ 5) ¢y + (327
2223 —262% — 222+ 3) y? + (32° + 52 + 52+ 3) y + 52° + 222 + 5) v + 1527 + 22
+2y(z — 1)%(z + 1) + 2¢3(z — 1)%2(2 + 1) + y*2® (152 + 22 + 15) + y (152*
=223 — 9022 — 22 + 15) + 15] / [(z — 1)*(y — 1)*(zy — 1)*(2 — 1)*(yz — 1)?
(zyz = 1] = [Az + Dy + D(yz + 1) (2" + 42 + Dy’ + (22 + 1) ¢
—Az+ Dy +4z (y* — 1) (y*2* — 1) +2° (2®y* —42(z+ 1)y* — (P + 1) °
+4(z+ Dy + 1) — Dlog(z + 1)] / [(z — 1)3z(y — 1)*(yz — 1)%] — [4(y + 1)(zy
+1)(z +1) (2% (22 — 4z — 1)y4+4a:(x+1) (2 =1)y* = (2 +1) (:* —42 - 1)
Yy —d@+1) (22— 1) y+ 22 — 4z — 1) log(zy + 1)] / [z(y — 1)*y(zy — 1)3(2—
D?] - [4(z+1)(yz+ 1) (L3y°z7 + 2%y (da(y + 1) + 5)2° — ay® ((v*+
Da? —4y+ Dz —3)2° —y® (dy(y + Da® +5 (y> + 1) 2® + d(y + Dz + 1) 2*+
y(vP2® —dy(ly+1)2” =3 (P + 1) w — 4y + 1)) 2° + 527y + y° + da(y + 1)
y+1) 22 + (3 + Dy +4)z — 1) log(zyz + 1)] / [ay(z — 1)*2(yz — 1) (zyz — 1)*])]
/@ + 12y +1)%(2y + 1)*(z + 1)%(yz + 1)*(zyz + 1)°] dedydz
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Recursions in Ising integrals

Consider the 2- parameter class of Ising integrals (which arises in QFT for odd k):
/ / 1 duq du,,
s L.
> = (uy + 1/“3)) “ i

After computing 1000-digit numerlcal values for all n up to 36 and all kup to 75
(performed on a highly parallel computer system), we discovered (using PSLQ)
linear relations in the rows of this array. For example, when n = 3:

0 = 03,0 — 840372 + 21603,4

0 = 2031 —69C53+ 135C]5 5

0 = C32—24C54 +40C56

0 = 32053 —630C5 5+ 945C5 ;

0 = 125C54 —2172C5 ¢ + 3024C5 5

Similar, but more complicated, recursions have been found for all n.

D.H. Bailey, D. Borwein, J.M. Borwein and R.E. Crandall, “Hypergeometric forms for Ising-class integrals,”
Experimental Mathematics, vol. 16 (2007), pg. 257-276.

J.M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Experimental Mathematics, vol. 17
(2008), pg. 223-230.

20



Four hypergeometric evaluations

;

o 30%(1/3)  V/3qS o[ 1/2:1/2,1/2
80T 3oz T T g 302 1,1

C3,2 = 37T33F2< 1/2,1/2,1/2 1)
| 288 2,9 1
Ci0 = 7;4;30 (Zf _ 7;44F3< 1/2,1{,2,1’1{2,1/2 1)
Cao = 76T—jl 44F3< 1/2,1{’271,1{271/2 1)
(e )]

D.H. Bailey, .M. Borwein, D.M. Broadhurst and M.L. Glasser, “Elliptic integral representation of Bessel
moments,” Journal of Physics A: Mathematical and Theoretical, vol. 41 (2008), 5203-5231.
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2-D integral in Bessel moment study

We conjectured (and later proved)

/2 /2 : :
o = z/ / K (sin #) K(sin ¢) 19 d¢
2 —7r/2\/

—7/2 cos2 0 cos? ¢ + 4 sin2(9 + ¢)

Here K denotes the complete elliptic
integral of the first kind

Note that the integrand function has
singularities on all four sides of the
region of integration.

We were able to evaluate this integral
to 120-digit accuracy, using 1024 cores
of the “Franklin” Cray XT4 system at
LBNL.
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Box integrals

The following integrals appear in numerous arenas of math and physics:

1 1
Bn(8> = /O /O (T%++T%)S/2 d,r.l,.-d’r'n

1 1
5/2
An(s) = /O.../O ((?“1—611)2+°"+(7“n—qn)2)/ dry---dr, dqi - dgy

* B,(1) is the expected distance of a random point from the origin of n-cube.

* A (1) is the expected distance between two random points in n-cube.

* B,(-n+2) is the expected electrostatic potential in an n-cube whose origin has a unit
charge.

* A (-n+2) is the expected electrostatic energy between two points in a uniform n-
cube of charged “jellium.”

* Recently integrals of this type have arisen in neuroscience — e.g., the average
distance between synapses in a mouse brain.

D.H. Bailey, .M. Borwein and R.E. Crandall, “Box integrals,” Journal of Computational and Applied
Mathematics, vol. 206 (2007), pg. 196-208.
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One example result

du

/OO (—1+ e~ o v uerf(u))?

16

cTJ*‘%‘w

(6 +6v2 — 12v/3 — 107 + 301og(1 + v/2) + 301og(2 + \/§))

As in many of the previous results, this was found by first computing the integral to
high precision (250 to 1000 digits), conjecturing possible terms on the right-hand
side, then applying PSLQ to look for a relation. We now have proven this result.

Dozens of similar results have since been found (see next few viewgraphs), raising
hope that all box integrals eventually will be evaluated in closed form.

D.H. Bailey, .M. Borwein and R.E. Crandall, “Advances in the theory of box integrals,” Mathematics of
Computation, vol. 79, no. 271 (Jul 2010), pg. 1839-1866; http://crd.Ibl.gov/~dhbailey/dhbpapers/BoxlI.pdf.
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Recent evaluations of box integrals

n s B, (s)
any | even s > 0 rational, e.g., : Bo(2) =2/3
1 s # —1 5

> [ A %3

2 -3 —/2

2 -1 21og(1 + v/2)

2 1 V2 + tlog(1 + v2)

2 3 V2 + 35 log(1 + v/2)

2 | s#-2 2 oF (335 1)

3 -5 —5V3— 57

3 -4 —%ﬂarctan%

3 -2 3G + mog(1+ﬂ)+3 Tis(3 — 2v/2)
3 -1 —17+ 3log (24 V3)

3 1 1[ 247T+110g(2+\f)
3 3 2V3 — m— L log (24 V/3)

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.
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Recent evaluations of box integrals,

continued
ni| s B,(s)
41 -5 — 8arctan(%)
4 | -3 4 G —12Tiy(3 — 2v2)
4| -2 mlog (2+v3) —2G -
4 | -1 2log3—§G+2T12(3—2\/§)—ﬁarctan(%)
411 %—1—%+1T12(3—2\/§)+10g3—iarctan is
51 -3 —%G—lOlog(Z— ) 7r +510g(1+\/_)—%\/§arctan(ﬁ>
+12Cl, (9+ 7r)+20C2(0+ w)—lOCI (9—|—37r)—2—??012(9—|—%7r)
-2 —B( 6) — = Bs(— )+ mog(3)+10T12(§)—10G
-1 110G+ log(2—f)9+@7T2+510g(1+\/5)—% Sarctan(ﬁ)
§012(§9+4§7r)—18001 2 (50— ¢
~0CL(0+in)+2CL(0+ 3 7r)—1— (9+§7r)+2—90012(8+16—17r)
5| 1 —%G%—%log@—ﬁ)@%—%ﬂ + = \/_—i— log(H"/E) % 3arctan<ﬁ)—l—
TCl (30 + 3 w) 701 (3 9—3
—2—77C12(9+%W)——C1 (9+ 7T) 012(9+ 7T) %—%012(94—%71')

Here G is Catalan; Cl is Clausen function; Ti is Lewin function; and 6 = arctan((16-3*sqrt(15))/11).
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Ramble integrals

Continuing some earlier research [see refs below], we consider
S

Wa(s) = Zezm’fi, dx
0,1]™ =1

which is the s-th moment of the distance to the origin after n steps of a uniform
random walk in the plane, with unit steps in a random direction.

|
-6 -4

W,

1. .M. Borwein, D. Nuyens, A. Straub and J. Wan, “Some arithmetic properties of short random walk
integrals,” Ramanujan Journal, to appear, available at http://www.carma.newcastle.edu.au/~jb616/walks.pdf.
2. J.M. Borwein, A. Straub, and J. Wan, “Three-step and four-step random walk integrals,” Experimental
Mathematics, to appear, available at http://www.carma.newcastle.edu.au/~jb616/walks2.pdf.
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Complex plane graph of W,

‘




Some results

5/6 -
W3(0) = /1/6 log(2sin(my))dy = %01 (§>
W3(2) = 2+%Cl<g)—¥
wi) = 10

W,(0) = log(2)—*v—/0 (ng(x)—l)d—x—/loojg(x)d_x

X i

= log(2) —~ — n/ooo log(z) 3~ (z)Jy (z)dx

W) = n /0 h (log (%) —7>2J3_1(x)J1(x)dx

Wi(-1) = (log2 =)W, (1) — [ log(a) (e
Wi) = [ R @) ) (1 - 5 - log(2a) da

Here Cl denotes the Clausen function and gamma denotes Euler’s constant.
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1000-digit computations of W, ’(0)
using Sidi’s scheme for oscillating functions

n | Precision | Iterations Time 30-digit numerical values

3 200 159 123 | 0.3230659472194505140936365107238 . . .
400 320 2046
1000 802 | 106860

5 200 159 249 | 0.5444125617521855851958780627450. . .
400 319 2052
1000 801 | 106860

7 200 157 249 | 0.7029262924769672667878239443952 . . .
400 318 2050
1000 800 | 106860

9 200 156 248 | 0.8241562395323886948205228248496 . . .
400 317 2120
1000 799 | 106800

11 200 155 247 | 0.9218508867326536975658915279703 . . .
400 316 4123
1000 796 | 213480

13 200 154 246 | 1.0035835304893201106044538743208 . . .
400 314 4113
1000 796 | 213540

15 200 152 245 | 1.0738262172568560361842527815003 . . .
400 313 4096
1000 795 | 213480

17 200 151 244 | 1.1354107037674110729532392500429 . . .
400 312 4104
1000 794 | 213360

For the even-n case, even Sidi’'s scheme doesn’t work. We have 50 digits, though.
30




Elliptic function integrals

The research with ramble integrals led us to study integrals of the form:
1
I(ng,n1,n9,n3,n4) = / " K™ () K'™ (2)E™ (z)E"™ (x)dx,
0

where K, K', E, E" are eIIiptic integral functions:

Blo) = / V(1= t2 — 1212)
K'(z) := \/1—x2)

1 — 2t2
BE(z) = \QLQ dt
0 1 —t

E'(z) = E(V1-2?)

James Wan, “Moments of products of elliptic integrals,” Advances in Applied Mathematics, vol. 48 (2012),
available at http://carma.newcastle.edu.au/jamesw/mkint.pdf.
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Relations found among the | integrals

Thousands of relations have been found among the | integrals. For example, among
the class with ny<=D,=4and n, + n, + n; + n, = D, = 3 (a set of 100 integrals),
we found that all can be expressed in terms of an integer linear combination of 8
simple integrals. For example:

1 1 1

81/ 3 K?(x)E(z)dx Z —6/ K3(:U)d:c—24/ 22 K3 (z)dw

0 0 0
1 1
—|—51/ x3K3(at)da:+32/ o K3 () dx
0 0

1 , 1 1

—243/ P K(2)E(x)K' (2)dx = —59/ K3(x)dx+468/ 2 K3 (x)dx
0 0 0

1 1 1

+156/ $3K3($)d$—624/ s K3 (x)dx — 135/ vK(z)E(x)K'(z)dx

0 0 0
1 , 1 1
—20736/ e B (2)K'(z)dxr = 3901/ K3(aj)da:—3852/ r? K3(x)dx
0 0 0
1 1

—1284/ as?’K?’(az)dx+5136/x4K3(x)dx—2592/ 2? K?(2)K'(z)dx

0 0

972 /O 'K (@) E(2) K (2)dz — 8316 /O oK (2) B(x) K () .
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Summary of EE’KK’ integral results

Dy | Dy | Relations | Basis | Total | Precision | Basis norm bound | Max relation norm
0 1 1 3 4 1500 | 1.582082 x 10298 2.236068 x 10°
1 1 5 3 8 1500 | 2.155768 x 10297 3.605551 x 10°
2 1 9 3 12 1500 | 2.155768 x 10297 5.916080 x 10°
3 1 13 3 16 1500 | 2.155768 x 10297 1.679286 x 10*
4 1 17 3 20 1500 | 2.155768 x 10297 6.592420 x 10!
5 1 21 3 24 1500 2.155768 x 10297 2.419628 x 102
0] 2 4 6 10 1500 | 5.609665 x 10201 2.109502 x 10T
1 2 12 8 20 1500 | 4.877336 x 10196 5.744563 x 10°
21 2 22 8 30 1500 | 6.109876 x 10195 2.293469 x 10!
31 2 32 8 40 1500 | 6.109876 x 10195 2.293469 x 10!
41 2 42 8 50 1500 | 6.109876 x 10195 1.639153 x 103
5 2 52 8 60 1500 | 6.109876 x 1019 2.428260 x 103
o] 3 14 6 20 1500 | 3.871282 x 10%62 2.664001 x 102
1 3 34 6 40 1500 | 2.164052 x 10261 8.960469 x 10!
21 3 52 8 60 1500 | 1.496420 x 10197 9.666276 x 102
3] 3 72 8 80 1500 | 2.829003 x 10196 2.291372 x 103
41 3 92 8 100 1500 | 8.853827 x 1019 5.860112 x 103
5 3 112 8 120 1500 | 8.853827 x 10195 9.240898 x 10*
0] 4 20 15 35 1500 | 2.689124 x 10104 1.963656 x 10%
1 4 53 17 70 1500 6.195547 x 1091 2.186030 x 103
21 4 88 17 105 1500 4.059577 x 1091 2.970026 x 10*
3| 4 121 19 140 1500 8.856138 x 103! 5.658994 x 10°
41 4 156 19 175 1500 2.759846 x 1082 5.571466 x 109
51 4 191 19 210 1500 1.663418 x 10%2 1.857555 x 10°
0 5 45 11 56 1500 1.256977 x 10142 1.061532 x 10°
1 5 101 11 112 1500 | 2.602478 x 1042 1.025453 x 10°
2 5 155 13 168 1500 | 2.151577 x 10120 3.953731 x 10°
3 5 211 13 224 1500 1.314945 x 10120 3.728547 x 10°
41 5 265 15 280 1500 | 5.040597 x 10104 8.658997 x 106
51 5 321 15 336 1500 | 4.186191 x 10104 3.954175 x 101!
0] 6 56 28 84 3000 [ 2.958413 x 1019° 1.748907 x 106
1 6 138 30 168 3000 2.018080 x 1098 2.219430 x 109
21 6 222 30 252 3000 3.089318 x 1098 6.301251 x 108
3] 6 304 32 336 3000 1.324953 x 1092 2.929549 x 1010
41 6 388 32 420 3000 9.312061 x 109! 6.168516 x 1012
51 6 470 34 504 3000 6.616755 x 1086 7.199329 x 103
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For additional details

David H. Bailey and Jonathan M. Borwein, “Hand-to-hand combat with thousand-digit
integrals,” Journal of Computational Science, vol. 3 (2012), pg. 77-86, preprint
available at:

http://crd.1lbl.gov/~dhbailey/dhbpapers/combat.pdf
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Fractal box integrals

The box integral work, when applied to mouse brains, has suggested
extensions to integrals over Cantor sets (1-D, 2-D and 3-D). Some
interesting new results have been obtained:

= David H. Bailey, Jonathan M. Borwein, Richard E. Crandall and Michael G.

Rose, “Expectations on fractal sets,” manuscript, 22 Aug 2012, available at
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/fracboxes.pdf.

The fractal set computations were mostly done using Monte Carlo
methods. Can truly high-precision numerical values be obtained?

= Jon Borwein and Andrew Mattingtly (IBM Australia) have just completed
some results to 12+ digits.
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Computations of box integrals on
Cantor sets — analytic vs numeric

P 5(C1(P)) B2, Ci(P)) A@2 Ci(P))

Decimal Rational Decimal Numeric | Rational Decimal Numeric
0 0.630930 3/8 0.375000 0.375013 1/4 0.250000 0.250009
0001 0.723197 | 7379/19680 0.374949 0.374941 | 2459/9840 0.249898  0.249904
0010 0.723197 | 2457/6560  0.374543 0.374543 | 817/3280  0.249085 0.249080
0100 0.723197 | 2433/6560  0.370884 0.370887 | 793/3280  0.241768 0.241765
1000 0.723197 | 2217/6560 0.337957 0.337937 | 577/3280 0.175915 0.175928
001 0.753953 409/1092 0.374542  0.374552 68/273 0.249084  0.249092
010 0.753953 135/364 0.370879  0.370877 22/91 0.241758 0.241751
100 0.753953 123/364 0.337912 0.337895 16/91 0.175824 0.175824
0011 0.815465 737/1968 0.374492 0.374486 245 /984 0.248984  0.248989
01 0.815465 89/240 0.370833 0.370836 29/120 0.241667 0.241661
0110 0.815465 243 /656 0.370427 0.370429 79/328 0.240854  0.240850
10 0.815465 27/80 0.337500 0.337481 7/40 0.175000 0.175014
1001 0.815465 665/1968 0.337907 0.337894 173/984 0.175813 0.175812
1100 0.815465 219/656 0.333841 0.333825 55/328 0.167683 0.167686
011 0.876977 809/2184 0.370421 0.370397 | 263/1092  0.240842 0.240847
101 0.876977 737/2184 0.337454  0.337442 | 191/1092  0.174908 0.174904
110 0.876977 243/728 0.333791 0.333781 1/6 0.167582 0.167583
0111 0.907732 | 7289/19680 0.370376 0.370350 | 2369/9840 0.240752 0.240757
1011 0.907732 | 6641/19680 0.337449 0.337440 | 1721/9840 0.174898 0.174903
1101 0.907732 | 6569/19680 0.333791 0.333765 | 1649/9840 0.167581 0.167574
1110 0.907732 | 2187/6560 0.333384 0.333386 | 547/3280 0.166768 0.166774
1 1.000000 1/3 0.333333 0.333333 1/6 0.166667 0.166671
Max error 0.000033 0.000026
RMS error 0.000014 0.000008
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Open questions and future directions

Sidi has proposed a new algorithm for integrating even-order Bessel
function integrals. Does someone want to try it?

In general, can we extend fast numerical schemes such as Gaussian

quadrature, tanh-sinh quadrature and Sidi’s algorithms for oscillating
functions to more general domains, such as Cantor sets?

Even with the tanh-sinh and highly parallel computer systems, 20,000
digits are the most we can compute in reasonable time for 1-D integrals.
Are there any fundamentally faster methods?

2-D, 3-D and higher integrals are extremely expensive — much more so
than 1-D. Are there any fundamentally faster methods?

= Alex Kaiser tried “sparse grid” schemes, but got disappointing results — better
results were obtained using 2-D or 3-D versions of tanh-sinh.
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