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Abstract 
 
Many of us in the field of highly parallel scientific computing recognize that it is often 
quite difficult to match the run time performance of the best conventional 
supercomputers.  This humorous article outlines twelve ways commonly used in 
scientific papers and presentations to artificially boost performance rates and to present 
these results in the “best possible light” compared to other systems. 
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Many of us in the field of highly parallel scientific computing recognize that it is often 
quite difficult to match the run time performance of the best conventional 
supercomputers.  But since lay persons usually don't appreciate these difficulties and 
therefore don't understand when we quote mediocre performance results, it is often 
necessary for us to adopt some advanced techniques in order to deflect attention from 
possibly unfavorable facts.  Here are some of the most effective methods, as observed 
from recent scientific papers and technical presentations: 
 
1.  Quote only 32-bit performance results, not 64-bit results. 
 
We all know that it is hard to obtain impressive performance using 64-bit floating point 
arithmetic.  Some research systems do not even have 64-bit hardware.  Thus always quote 
32-bit results, and avoid mentioning this fact if at all possible.  Better still, compare your 
32-bit results with 64-bit results on other systems.  32-bit arithmetic may or may not be 
appropriate for your application, but the audience doesn't need to be bothered with such 
details. 
 
2.  Present performance figures for an inner kernel, and then represent these figures as the 
performance of the entire application. 
 
It is quite difficult to obtain high performance on a complete large-scale scientific 
application, timed from beginning of execution through completion.  There is often a 
great deal of data movement and initialization that depresses overall performance rates.  
A good solution to this dilemma is to present results for an inner kernel of an application, 
which can be souped up with artificial tricks.  Then imply in your presentation that these 
rates are equivalent to the overall performance of the entire application. 
 
3.  Quietly employ assembly code and other low-level language constructs. 



 
It is often hard to obtain good performance from straightforward Fortran or C code that 
employs the usual parallel programming constructs, due to compiler weaknesses on many 
highly parallel computer systems.  Thus you should feel free to employ assembly-coded 
computation kernels, customized communication routines and other low-level code in 
your parallel implementation.  Don't mention such usage, though, since it might alarm the 
audience to learn that assembly-level coding is necessary to obtain respectable 
performance. 
 
4.  Scale up the problem size with the number of processors, but omit any mention of this 
fact. 
 
Graphs of performance rates versus the number of processors have a nasty habit of 
trailing off.  This problem can easily be remedied by plotting the performance rates for 
problems whose sizes scale up with the number of processors.  The important point is to 
omit any mention of this scaling in your plots and tables.  Clearly disclosing this fact 
might raise questions about the efficiency of your implementation. 
 
5.  Quote performance results projected to a full system. 
 
Few labs can afford a full-scale parallel computer --- such systems cost millions of 
dollars.  Unfortunately, the performance of a code on a scaled down system is often not 
very impressive.  There is a straightforward solution to this dilemma --- project your 
performance results linearly to a full system, and quote the projected results, without 
justifying the linear scaling.  Be very careful not to mention this projection, however, 
since it could seriously undermine your performance claims for the audience to realize 
that you did not actually obtain your results on real full-scale hardware. 
 
6.  Compare your results against scalar, unoptimized code on Crays. 
 
It really impresses the audience when you can state that your code runs several times 
faster than a Cray, currently the world's dominant supercomputer.  Unfortunately, with a 
little tuning many applications run quite fast on Crays.  Therefore you must be careful not 
to do any tuning on the Cray code.  Do not insert vectorization directives, and if you find 
any, remove them.  In extreme cases it may be necessary to disable all vectorization with 
a command line flag.  Also, Crays often run much slower with bank conflicts, so be sure 
that your Cray code accesses data with large, power-of-two strides whenever possible.  It 
is also important to avoid multitasking and autotasking on Crays --- imply in your paper 
that the one processor Cray performance rates you are comparing against represent the 
full potential of a $25 million Cray system. 
 
7.  When direct run time comparisons are required, compare with an old code on an 
obsolete system. 
 
Direct run time comparisons can be quite embarrassing, especially if your parallel code 
runs significantly slower than an implementation on a conventional system.  If you are 



challenged to provide such figures, compare your results with the performance of an 
obsolete code running on obsolete hardware with an obsolete compiler.  For example, 
you can state that your parallel performance is “100 times faster than a VAX 11/780”.  A 
related technique is to compare your results with results on another less capable parallel 
system or minisupercomputer.  Keep in mind the bumper sticker “We may be slow, but 
we’re ahead of you.” 
 
8.  If MFLOPS rates must be quoted, base the operation count on the parallel 
implementation, not on the best sequential implementation. 
 
We know that MFLOPS rates of a parallel codes are often not very impressive.  
Fortunately, there are some tricks that can make these figures more respectable.  The 
most effective scheme is to compute the operation count based on an inflated parallel 
implementation. Parallel implementations often perform far more floating point 
operations than the best sequential implementation.  Often millions of operations are 
masked out or merely repeated in each processor. Millions more can be included simply 
by inserting a few dummy loops that do nothing.  Including these operations in the count 
will greatly increase the resulting MFLOPS rate and make your code look like a real 
winner. 
 
9.  Quote performance in terms of processor utilization, parallel speedups or MFLOPS 
per dollar. 
 
As mentioned above, run time or even MFLOPS comparisons of codes on parallel 
systems with equivalent codes on conventional supercomputers are often not favorable.  
Thus whenever possible, use other performance measures.  One of the best is “processor 
utilization” figures.  It sounds great when you can claim that all processors are busy 
nearly 100% of the time, even if what they are actually busy with is synchronization and 
communication overhead.  Another useful statistic is “parallel speedup” --- you can claim 
“fully linear” speedup simply by making sure that the single processor version runs 
sufficiently slowly.  For example, make sure that the single processor version includes 
synchronization and communication overhead, even though this code is not necessary 
when running on only one processor. A third statistic that many in the field have found 
useful is “MFLOPS per dollar”.  Be sure not to use “sustained MFLOPS per dollar”, i.e. 
actual delivered computational throughput per dollar, since these figures are often not 
favorable to new computer systems. 
 
10.  Mutilate the algorithm used in the parallel implementation to match the architecture. 
 
Everyone is aware that algorithmic changes are often necessary when we port 
applications to parallel computers.  Thus in your parallel implementation, it is essential 
that you select algorithms which exhibit high MFLOPS performance rates, without regard 
to fundamental efficiency.  Unfortunately, such algorithmic changes often result in a code 
that requires far more time to complete the solution.  For example, explicit linear system 
solvers for partial differential equation applications typically run at rather high MFLOPS 
rates on parallel computers, although they in many cases converge much slower than 



implicit or multigrid methods.  For this reason you must be careful to downplay your 
changes to the algorithm, because otherwise the audience might wonder why you 
employed such an inappropriate solution technique. 
 
11.  Measure parallel run times on a dedicated system, but measure conventional run 
times in a busy environment. 
 
There are a number of ways to further boost the performance of your parallel code 
relative to the conventional code.  One way is to make many runs on both systems, and 
then publish the best time for the parallel system and the worst time for the conventional 
system. Another is to time your parallel computer code on a dedicated system and time 
your conventional code in a normal loaded environment.  After all, your conventional 
supercomputer is very busy, and it is hard to arrange dedicated time.  If anyone in the 
audience asks why the parallel system is freely available for dedicated runs, but the 
conventional system isn’t, change the subject. 
 
12.  If all else fails, show pretty pictures and animated videos, and don't talk about 
performance. 
 
It sometimes happens that the audience starts to ask all sorts of embarrassing questions.  
These people simply have no respect for the authorities of our field.  If you are so 
unfortunate as to be the object of such disrespect, there is always a way out --- simply 
conclude your technical presentation and roll the videotape. Audiences love razzle-dazzle 
color graphics, and this material often helps deflect attention from the substantive 
technical issues. 
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