
Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers

David H. Bailey
June 11, 1991

Ref: Supercomputing Review, Aug. 1991, pg. 54--55

Abstract

Many of us in the field of highly parallel scientific computing recognize that it is often
quite difficult to match the run time performance of the best conventional
supercomputers. This humorous article outlines twelve ways commonly used in
scientific papers and presentations to artificially boost performance rates and to present
these results in the “best possible light” compared to other systems.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at
NASA Ames Research Center, Moffett Field, CA 94035.

Many of us in the field of highly parallel scientific computing recognize that it is often
quite difficult to match the run time performance of the best conventional
supercomputers. But since lay persons usually don't appreciate these difficulties and
therefore don't understand when we quote mediocre performance results, it is often
necessary for us to adopt some advanced techniques in order to deflect attention from
possibly unfavorable facts. Here are some of the most effective methods, as observed
from recent scientific papers and technical presentations:

1. Quote only 32-bit performance results, not 64-bit results.

We all know that it is hard to obtain impressive performance using 64-bit floating point
arithmetic. Some research systems do not even have 64-bit hardware. Thus always quote
32-bit results, and avoid mentioning this fact if at all possible. Better still, compare your
32-bit results with 64-bit results on other systems. 32-bit arithmetic may or may not be
appropriate for your application, but the audience doesn't need to be bothered with such
details.

2. Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

It is quite difficult to obtain high performance on a complete large-scale scientific
application, timed from beginning of execution through completion. There is often a
great deal of data movement and initialization that depresses overall performance rates.
A good solution to this dilemma is to present results for an inner kernel of an application,
which can be souped up with artificial tricks. Then imply in your presentation that these
rates are equivalent to the overall performance of the entire application.

3. Quietly employ assembly code and other low-level language constructs.

It is often hard to obtain good performance from straightforward Fortran or C code that
employs the usual parallel programming constructs, due to compiler weaknesses on many
highly parallel computer systems. Thus you should feel free to employ assembly-coded
computation kernels, customized communication routines and other low-level code in
your parallel implementation. Don't mention such usage, though, since it might alarm the
audience to learn that assembly-level coding is necessary to obtain respectable
performance.

4. Scale up the problem size with the number of processors, but omit any mention of this
fact.

Graphs of performance rates versus the number of processors have a nasty habit of
trailing off. This problem can easily be remedied by plotting the performance rates for
problems whose sizes scale up with the number of processors. The important point is to
omit any mention of this scaling in your plots and tables. Clearly disclosing this fact
might raise questions about the efficiency of your implementation.

5. Quote performance results projected to a full system.

Few labs can afford a full-scale parallel computer --- such systems cost millions of
dollars. Unfortunately, the performance of a code on a scaled down system is often not
very impressive. There is a straightforward solution to this dilemma --- project your
performance results linearly to a full system, and quote the projected results, without
justifying the linear scaling. Be very careful not to mention this projection, however,
since it could seriously undermine your performance claims for the audience to realize
that you did not actually obtain your results on real full-scale hardware.

6. Compare your results against scalar, unoptimized code on Crays.

It really impresses the audience when you can state that your code runs several times
faster than a Cray, currently the world's dominant supercomputer. Unfortunately, with a
little tuning many applications run quite fast on Crays. Therefore you must be careful not
to do any tuning on the Cray code. Do not insert vectorization directives, and if you find
any, remove them. In extreme cases it may be necessary to disable all vectorization with
a command line flag. Also, Crays often run much slower with bank conflicts, so be sure
that your Cray code accesses data with large, power-of-two strides whenever possible. It
is also important to avoid multitasking and autotasking on Crays --- imply in your paper
that the one processor Cray performance rates you are comparing against represent the
full potential of a $25 million Cray system.

7. When direct run time comparisons are required, compare with an old code on an
obsolete system.

Direct run time comparisons can be quite embarrassing, especially if your parallel code
runs significantly slower than an implementation on a conventional system. If you are

challenged to provide such figures, compare your results with the performance of an
obsolete code running on obsolete hardware with an obsolete compiler. For example,
you can state that your parallel performance is “100 times faster than a VAX 11/780”. A
related technique is to compare your results with results on another less capable parallel
system or minisupercomputer. Keep in mind the bumper sticker “We may be slow, but
we’re ahead of you.”

8. If MFLOPS rates must be quoted, base the operation count on the parallel
implementation, not on the best sequential implementation.

We know that MFLOPS rates of a parallel codes are often not very impressive.
Fortunately, there are some tricks that can make these figures more respectable. The
most effective scheme is to compute the operation count based on an inflated parallel
implementation. Parallel implementations often perform far more floating point
operations than the best sequential implementation. Often millions of operations are
masked out or merely repeated in each processor. Millions more can be included simply
by inserting a few dummy loops that do nothing. Including these operations in the count
will greatly increase the resulting MFLOPS rate and make your code look like a real
winner.

9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS
per dollar.

As mentioned above, run time or even MFLOPS comparisons of codes on parallel
systems with equivalent codes on conventional supercomputers are often not favorable.
Thus whenever possible, use other performance measures. One of the best is “processor
utilization” figures. It sounds great when you can claim that all processors are busy
nearly 100% of the time, even if what they are actually busy with is synchronization and
communication overhead. Another useful statistic is “parallel speedup” --- you can claim
“fully linear” speedup simply by making sure that the single processor version runs
sufficiently slowly. For example, make sure that the single processor version includes
synchronization and communication overhead, even though this code is not necessary
when running on only one processor. A third statistic that many in the field have found
useful is “MFLOPS per dollar”. Be sure not to use “sustained MFLOPS per dollar”, i.e.
actual delivered computational throughput per dollar, since these figures are often not
favorable to new computer systems.

10. Mutilate the algorithm used in the parallel implementation to match the architecture.

Everyone is aware that algorithmic changes are often necessary when we port
applications to parallel computers. Thus in your parallel implementation, it is essential
that you select algorithms which exhibit high MFLOPS performance rates, without regard
to fundamental efficiency. Unfortunately, such algorithmic changes often result in a code
that requires far more time to complete the solution. For example, explicit linear system
solvers for partial differential equation applications typically run at rather high MFLOPS
rates on parallel computers, although they in many cases converge much slower than

implicit or multigrid methods. For this reason you must be careful to downplay your
changes to the algorithm, because otherwise the audience might wonder why you
employed such an inappropriate solution technique.

11. Measure parallel run times on a dedicated system, but measure conventional run
times in a busy environment.

There are a number of ways to further boost the performance of your parallel code
relative to the conventional code. One way is to make many runs on both systems, and
then publish the best time for the parallel system and the worst time for the conventional
system. Another is to time your parallel computer code on a dedicated system and time
your conventional code in a normal loaded environment. After all, your conventional
supercomputer is very busy, and it is hard to arrange dedicated time. If anyone in the
audience asks why the parallel system is freely available for dedicated runs, but the
conventional system isn’t, change the subject.

12. If all else fails, show pretty pictures and animated videos, and don't talk about
performance.

It sometimes happens that the audience starts to ask all sorts of embarrassing questions.
These people simply have no respect for the authorities of our field. If you are so
unfortunate as to be the object of such disrespect, there is always a way out --- simply
conclude your technical presentation and roll the videotape. Audiences love razzle-dazzle
color graphics, and this material often helps deflect attention from the substantive
technical issues.

Acknowledgments

The author wishes to acknowledge helpful contributions and comments by the following
persons: R. Bailey, E. Barszcz, R. Fatoohi, P. Frederickson, J. McGraw, J. Riganati, R.
Schreiber, H. Simon, V. Venkatakrishnan, S. Weeratunga, J. Winget and M. Zosel.

