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ABSTRACT 

 

A basket is a set of instruments that are held together because its statistical profile delivers a 

desired goal, such as hedging or trading, which cannot be achieved through the individual 

constituents or even subsets of them. Multiple procedures have been proposed to compute 

hedging and trading baskets, among which balanced baskets have attracted significant attention 

in recent years. Unlike Principal Component Analysis (PCA) style of methods, balanced baskets 

spread risk or exposure across their constituents without requiring a change of basis. 

Practitioners typically prefer balanced baskets because their output can be understood in the 

same terms for which they have developed an intuition. 

 

We review three methodologies for determining balanced baskets, analyze the features of their 

respective solutions and provide Python code for their calculation. We also introduce a new 

method for reducing the dimension of a covariance matrix, called Covariance Clustering, which 

addresses the problem of numerical ill-conditioning without requiring a change of basis. 

 

 

 

Keywords: Trading baskets, hedging baskets, equal risk contribution, maximum diversification, 

subset correlation. 
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1. INTRODUCTION 

A basket is a set of instruments that are held together because its statistical profile delivers a 

desired goal, such as hedging a risk or trading it, which cannot be achieved through the 

individual constituents or even subsets of them. Portfolio managers build trading baskets that 

translate their views of the markets into actual financial bets, while hedging their exposure to 

other risks they have no view on. Market makers build hedging baskets that allow them to offset 

the risk derived from undesired inventory. Quantitative researchers form hedging baskets as a 

mean to study, replicate or reverse-engineer the factors driving the performance of a security, 

portfolio or hedge fund (Jaeger (2008)). 

 

Multiple procedures have been proposed to compute hedging and trading baskets. Balanced 

baskets have attracted significant attention in recent years because, unlike PCA-style methods 

(see Litterman and Scheinkman (1991), Moulton and Seydoux (1998), for example), they spread 

risk or exposure across its constituents without requiring a change of basis. A change of basis is 

problematic because the basket’s solution is expressed in terms of the new basis (a linear 

combination of tradable instruments), which may not be intuitive in terms of the old basis. 

Practitioners typically prefer balanced baskets for this reason. 

 

In this paper we will differentiate between the goal of hedging and the goal of trading. In the first 

instance, the basket is formed to reduce the investor’s risk or exposure to any of its legs, or any 

subset of them. In the second instance, the investor would like to acquire risk or exposure to each 

and every of its legs (or subsets of them) in a balanced way. Although hedging baskets may 

appear to be the opposite of trading baskets, both concepts are intimately related and both can be 

computed using similar procedures. 

 

López de Prado and Leinweber (2012) reviewed the literature on hedging methods. Among the 

methods they studied are Equal-Risk Contribution (ERC), Maximum Diversification Ratio 

(MDR) and Mini-Max Subset Correlation (MMSC). The three are static (time-invariant) methods 

that attempt to balance the risk or exposure of the basket among its constituents. MDR solves a 

“hedging” problem, while MMSC and ERC can be applied to solve both, a “hedging” as well as 

a “trading” problem. 

 

Maillard, Roncalli and Teiletche (2009) and Demey, Maillard and Roncalli (2010) gave a formal 

definition of ERC. Previous descriptions can be found in Qian (2005, 2006) under the term “risk 

parity”, Booth and Fama (1992), and earlier authors. This procedure attempts to balance the 

contribution of risk for each of the basket’s legs. Empirical studies of ERC’s performance 

against alternative weighting schemes can be found in Neukirch (2008), DeMiguel, Garlappi and 

Uppal (2009) and Hurst, Johnson and Ooi (2010). Most authors impose the constraints that all 

weights must be positive and add up to one, because they have in mind an asset allocation 

application. Our analysis is free of such constraints because we would like to discuss the problem 

of constructing a basket in general terms, rather than focusing on a particular use. This concept’s 

popularity is illustrated by the many institutional asset managers offering ERC-weighted funds: 

PanAgora Asset Management, Bridgewater Associates, AQR Capital, Aquila Capital, Invesco, 

First Quadrant, Putnam Investments, ATP, Barclays Global Investors, Mellon Capital 

Management, State Street Global Advisors, … to cite only a few. 
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MDR was proposed by Choueifaty and Coignard (2008) and Choueifaty, Froidure and Reynier 

(2011). Their goal is to maximize a “diversification ratio” that effectively balances the basket’s 

exposure to each leg, measured in terms of correlation. Like in the ERC case, these authors also 

incorporate constraints characteristic of an asset allocation framework, which we will obviate in 

this study for the sake of generality. 

 

MMSC was introduced by López de Prado and Leinweber (2012). This procedure balances the 

exposure of the basket, not only to each leg (like MDR) but also to any subset of legs. The 

motivation is to reduce the basket’s vulnerability to structural breaks, i.e. when a subset receives 

a shock that does not impact the rest of the basket. In a basket of two instruments, MMSC 

coincides with MDR, since the only subsets are the legs themselves. Furthermore, we will see 

that when only two instruments are considered, ERC, MDR and MMSC give the same solution. 

However, the three procedures exhibit substantial differences whenever we are dealing with 

baskets of more than two instruments. 

 

The three procedures are theoretically sound. The purpose of this study is not to invalidate or 

criticize any of them, but to evidence the differences and properties associated with each 

solution. A second goal of this paper is to provide efficient algorithms for the calculation of 

ERC, MDR and MMSC. Hundreds of billions of dollars are invested using balanced basket 

approaches (particularly ERC), and yet no optimization algorithm can be found in the academic 

literature. A third, ancillary goal, is to provide a procedure for reducing the dimension of a 

covariance matrix to a number that makes these methodologies computationally feasible. We 

believe that our Covariance Clustering method has important applications for the management of 

risks in large portfolios of highly correlated instruments or funds. Given the analytical and 

algorithmic nature of this paper, an empirical study of the absolute and relative performance of 

balanced baskets over the past years is beyond its scope. Such study would merit an extensive 

and monographic discussion. 

 

The rest of the paper is organized as follows: Section 2 discusses the hedging problem in a two-

dimensional framework. Section 3 evidences the qualitative difference between working in two 

dimensions and dealing with three or more. Section 4 extends our “hedging” analysis to the 

problem of computing “trading baskets.” Section 5 summarizes our conclusions. Appendix 1 

derives a numerical procedure for the calculation of ERC baskets. Appendix 2 presents a 

codification of that algorithm in Python. Appendices 3 and 4 do the same in the context of 

MMSC and MDR baskets. Appendix 5 describes the Covariance Clustering method, and 

includes its implementation in Python. 

 

 

2. THE TWO-DIMENSIONAL HEDGING PROBLEM 

Suppose that a portfolio manager wishes to hedge her position of 1,000 S&P Midcap 400 E-mini 

futures contracts (Bloomberg code “FA1 Index”) using S&P 500 E-mini futures (Bloomberg 

code “ES1 Index”). The relevant covariance and correlation matrices on daily market value 

dollar changes (   ) are shown in Figure 1. As expected, we can appreciate a high and positive 

codependence between these two products, with an estimated correlation coefficient approaching 

0.95. 
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[FIGURE 1 HERE] 

 

Given some holdings   and a covariance matrix V of market value dollar changes, we can 

compute the variance of market value changes of the resulting basket B of n constituents as 
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where      is the covariance between     and    . One option would be to compute the vector 

    that minimizes the basket’s variance, 
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for which a general solution can be found in López de Prado and Leinweber (2012). In our 

particular case, n=2 and our holdings of “FA1 Index” are set fix to be         , so the only 

free holding is   . Deriving, 
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Because 
     

 

   
   , applying the first order condition (

    
 

   
  ) will lead to a minimum at the 

point       (   
    

  
 )  (             ), with               . The solution matches 

the coefficients of an Ordinary Least Squares (OLS) regression, which should have been 

expected, since the regression’s objective function coincides with Eq. (2) for the case n=2. 

 

Scherer (2010) and Clarke, de Silva and Thorley (2011) offer practical examples of OLS and 

Minimum Variance (MV) solutions. Although ubiquitous, the solutions provided by these 

procedures exhibit a few undesirable traits. For example, note that if we had switched contracts, 

the alternative second holding would have been  ̃   
 ̃   

 ̃ 
   

    

  
 , and  ̃  

 

  
 unless 

     . So the ordering of the instruments introduces some arbitrariness to this solution. Also, 

the risk contributed by each of the basket’s constituents is not equal. In order to evaluate that, we 

need first to formalize the concept of Contribution to Risk. 

 

2.1. CONTRIBUTION TO RISK 

The marginal contribution to the basket’s variance from a leg i is 
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where          , and        
 is the covariance between changes in the basket’s dollar value 

and changes in the i-th leg’s dollar value. Because volatility is a homogeneous function of degree 

1, Euler’s theorem allows us to write 
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(5) 

 

 

where   represents a Hadamard product. We can define Contribution to Risk (CtR) as 
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and obviously ∑     
 
     . One hedging option would be to estimate the Equal-Risk 

Contribution (ERC) vector, such that               . In our n=2 case, that occurs when  

 

   
   

                 
   

               

 

      

  

  
 

(7) 
 

 

which leads to      (             ). Unlike in the OLS solution, the ERC solution is not 

affected by the order of the instruments. The risk of ERC’s hedging basket is               . 

That is very close to the minimum risk of the MV-OLS solution, with the advantage that with 

ERC we get           
 

 
. That is not the case of     (             ), for which we 

obtain        and       . So although the MV-OLS solution has reduced risk from 

920,304.74 to a minimum 299,709.02, the first leg is still responsible for the entirety of the risk. 

In order to understand why, we need to introduce the concept of Correlation to Basket (CtB). 

 

2.2. CORRELATION TO BASKET 

The correlation of each constituent to the overall basket can be computed as 
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where     
 √    

  |  |  . The factor    [  ] arises from simplifying 
  

√  
 
. López de Prado 

and Leinweber (2012) show how to compute a general hedging basket such that      
         , which the authors call MMSC (for Mini-Max Subset Correlation). In our particular 

n=2 case, we expect the hedge to be      since       , so the equal exposure is achieved at 

 

                              

 

      

  

  
 

(11) 
 

 

which means that the MMSC and ERC solutions coincide when n=2. There is a connection 

between CtR and CtB, as evidenced by Eq. (6) and Eq. (10), specifically, 

 

      
    

   
     

|  |  

   
     

(12) 
 

 

From this expression we deduce that an ERC basket will match the MMSC solution when 

|  |   |  |  . This condition is clearly met when n=2 (see Eq. 11), however that is not 

generally true when n>2. 

 

For       (             ), we obtain               , while for     
(             ) we obtained           and       . So what the MV-OLS solution has 

done is to add an “ES1 Index” leg that is orthogonal to the basket. The risk from     is slightly 

lower (in fact, the lowest), however it is still concentrated in the first leg (      ). These are 

good reasons for favouring MMSC or ERC solutions over MV or OLS. 

 

2.3. SPECTRAL DECOMPOSITION 

A change of basis will allow us to understand geometrically the previous analysis. Because a 

covariance matrix V is squared and symmetric, its eigenvector decomposition delivers a set of 

real-valued orthonormal vectors that we can use to plot the MV-OLS and the MMSC-ERC 

solutions. Applying the Spectral Theorem, 

 

        (13) 
 

 

where   is the eigenvalues matrix, W is the eigenvectors matrix, and    denotes its transpose.   

is a squared diagonal matrix and the columns of W are orthogonal to each other, i.e.       , 

with unit length. For convenience, we reorder columns in W and   so that               . The 

i-th principal component is defined by a portfolio with the holdings listed in the i-th column of 

W. Looking at the above equation,   can then be interpreted as the covariance matrix between 

the principal components characterized by the columns of W. The factor loadings vector 

       gives us the projection of   into this new orthogonal basis. This can be verified from 

   
                     . The product       , where I represents the identity 

matrix, gives us the directions of the old axes in the new basis. 
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Going back to our original example, 
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] (14) 

 

 

For the initial position    [
    
 

], the factor loadings are    
 [

         
          

]. It becomes 

evident that    is not well hedged, because the    
 vector is not pointing in the direction of the 

second orthogonal component, which is the one with least variance. If we adopted the MV-OLS 

solution, the resulting basket would take the direction     
 [

        
          

] in the orthonormal 

axes. That is a noticeable improvement over   , as     is shown to be much closer to the 

second orthogonal component, thus it remains little directional risk in terms of these two 

instruments (“FA1 Index” and “ES1 Index”). And yet the MMSC-ERC solution is less 

directional, with       
 [

        
           

]. 

 

The first component is typically associated with market risk, of which       exhibits the least. 

The MMSC basket is almost completely associated with spread risk, which is best captured by 

the second component. López de Prado and Leinweber (2012) show how to compute in general a 

hedging portfolio with zero exposure to the first components. For the n=2 case, it means that 
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(15) 
 

 

and re-scaling to meet the condition that      , we obtain that        (  
    

    
). In our 

example, this means that      (             ). Then,      
 [

 
           

], which 

indicates that we are perfectly hedged against the most volatile of the orthogonal components 

(typically known as the “market component”), as expected. Figure 2 graphs these vectors. 

 

[FIGURE 2 HERE] 

 

The columns of W (which characterize the Principal Components) represent linear combinations 

of the securities, which happen to be orthogonal to each other, sorted descending in terms of the 

variance associated with that direction. In this PCA approach, we are hedged against all risk 

coming from the first n-1 components (with the largest variance), and fully concentrated on the 

n-th component (with the smallest variance). One caveat of the PCA approach is that the 

interpretation of the n-th component is not necessarily intuitive in terms of the basket 

constituents. For example, in the ERC approach we know that each leg contributes equal risk, 



9 

 

and in the MMSC approach that the basket had equal exposure to each leg. That direct 

connection between the solution and the basket constituents is missing in the PCA approach, 

because of the change of basis. This is generally perceived as a drawback, particularly in highly-

dimensional problems. MMSC is an appealing alternative to PCA because MMSC searches for a 

basket as orthogonal as possible to the legs, without requiring a basis change (like PCA). So 

although MMSC’s solution is close to PCA’s, it can still be linked intuitively to the basket’s 

constituents. Understanding how this is done beyond the two-dimensional framework requires us 

to introduce the concept of subset correlation. 

 

 

3. HEDGING BEYOND TWO DIMENSIONS 

In the previous section we argued in favor of MMSC and ERC over alternative hedging 

approaches such as MV or PCA. The problem with MV’s solution was that risk contribution 

(measured in terms of CtR) and exposure (measured in terms of CtB) of the basket’s constituents 

is typically unbalanced. The problem with PCA was that the solution cannot be immediately (or 

for that matter, intuitively) understood in terms of the basket’s constituents. In this section we 

will examine the distinct features of MMSC and ERC beyond the two-dimensional case. 

 

The previous example was simplified by the fact that we were only considering two dimensions. 

As we will see next, there is a qualitative difference between working in two dimensions and 

working with three or more. Suppose that a portfolio manager wishes to hedge her position of 

1,000 S&P Midcap 400 E-mini futures contracts (“FA1 Index”) using two other instruments: 

S&P 500 E-mini futures (“ES1 Index”) and DJAI E-Mini futures (“DM1 Index”). The relevant 

covariance and correlation matrices of daily market value (dollar) changes are shown in Figure 3, 

with the corresponding eigenvectors and eigenvalues matrices. 

 

[FIGURE 3 HERE] 

 

As expected, we can appreciate a high and positive codependence between these three products. 

It is of course desirable to hedge our position using instruments highly correlated to it (about 

0.95 correlation against “ES1 Index”, and 0.91 correlation against “DM1 Index”). Unfortunately, 

that comes at the cost of having to deal with a similarly high correlation between the hedging 

instruments (about 0.98 correlation between “ES1 Index” and “DM1 Index”). This poses a 

problem because there may be an overlap between the hedges, which was not present in the two-

dimensional case. 

 

3.1. THE EQUAL-RISK CONTRIBUTION (ALIAS, RISK PARITY) SOLUTION 

We will illustrate this last point by computing the ERC basket, which solves the problem (recall 

Eq. (6)) 

 

 
     {  |

       

   
  

 

 
   } 

(16) 
 

 

Appendix 1 provides the details of this calculation, for any n dimensions, and Appendix 2 offers 

an algorithm coded in Python which computes the ERC basket. 
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[FIGURE 4 HERE] 

 

Figure 4 reports the results of applying this algorithm to the input variables in Figure 3. A first 

problem with this result is the uneven correlations to the basket (CtB). The (“ES1 Index”, “DM1 

Index”) subset will dominate the performance of the hedge, with its 0.26 correlation to the 

basket. This could have potentially serious consequences should there exist a correlation break 

between “ES1 Index” and “DM1 Index” on one hand and “FA1 Index” on the other. A second 

problem is that the solution itself is not unique. Figure 5 presents an alternative solution for 

which also      
 

 
   , with unacceptably high values like          . We would of course 

reject this alternative solution out of common sense, however it would be better to rely on a 

procedure that searches for reasonable hedges, if possible with unique solutions.  

 

[FIGURE 5 HERE] 

 

In conclusion, ERC does not necessarily deliver a unique and balanced (exposure-wise) solution 

when n>2. 

 

3.2. DIVERSIFIED RISK PARITY 

Building on an idea of Meucci (2009b), Lohre, Neugebauer and Zimmer (2012) and Lohre, 

Opfer, and Ország (2012), proposed a very interesting variation of ERC that they branded 

“Diversified Risk Parity” (DRP). It computes the allocations such that the contribution to risk 

from every principal component is equal. In a nutshell, DRP is like ERC, but computed on the 

principal components instead of the actual instruments. Like PCA, DRP also requires a spectral 

decomposition, and thus a change of basis. We cannot strictly classify it as a balanced basket, 

however we will derive its calculation for illustration purposes. Our DRP solution differs from 

Lohre, Neugebauer and Zimmer (2012) in two aspects: First, we are not imposing the asset 

allocation constraints (non-negativity, additivity to one), because they are not relevant in a 

hedging framework. Second (and as a consequence of the first aspect), our solution is analytical, 

while theirs is numerical. 

 

3.2.1. ANALYTICAL SOLUTION 

Recall from Section 2.3 that the eigenvectors of a symmetric matrix are orthonormal, thus 

      and            . The correlation between any two distinct principal components is 
    

√        
       . This implies that, given some factor loadings       , the basket’s 

variance can be simply decomposed as    
  ∑ [  ] 

     
 
   , where [  ]  is the i-th element of 

the factor loading’s vector. We conclude that the contribution to risk of the i-th principal 

component is 

 

 
   ̃  

[  ] 
     

∑ [  ] 
     

 
   

 
(17) 

 

 

Suppose that [  ]  √
    

    
   . Then,    ̃  

    
    

    

    ∑
 

    
    

 
   

 
 

 
, which is the ERC solution on 

factor loadings   . But    are loadings in the new basis (of principal components), and we still 
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need to derive the holdings in the old basis (of actual instruments). Since        and 

      , these can be computed as 

 

                 (18) 
 

 

[FIGURE 6 HERE] 

 

In our particular example, Eq. (18) leads to the solution shown in Figure 6. This result is 

mathematically correct, and yet looking at the actual holdings proposed, many portfolio 

managers may have a difficult problem understanding it.    ̃  
 

 
   , however CtR and CtB (in 

terms of the instruments) exhibit a large concentration on “DM1 Index”. Another inconvenience 

of DRP, which in fact is shared by all PCA-style approaches, is their lack of robustness in the 

presence of numerically ill-conditioned covariance matrices: A change in just one observation 

may produce a last eigenvector that spans in a completely different direction, and because DRP 

equally distributes risk among all principal components, the impact on      will be dramatic. 

This makes PCA-like baskets in general, and DRP in particular, vulnerable to structural breaks 

and outliers. In Appendix 5 we present a covariance clustering procedure which addresses this 

concern. 

 

3.2.2. THE DANGER OF “HOLDING” AN EIGENVECTOR IN A RISK-ON/RISK-OFF 

ENVIRONMENT 

Regardless of the practicality of the DRP solution, it is useful for understanding why baskets 

pointing in the direction of an eigenvector should not be part of a hedging basket, except for the 

eigenvector associated with the smallest eigenvalue. Denote by  [  ] the risk of a portfolio 

pointing in the direction of the i-th eigenvector, and by  [
    

‖    ‖
] the risk associated with a unit-

length vector pointing in the direction of the DRP solution. As we move away from 
    

‖    ‖
 and 

toward   , we have computed the intermediate baskets,        (   )
    

‖    ‖
, which can 

be normalized as    
  

‖  ‖
. Figure 7(a) plots the resulting risk,  [  ] for   [   ] in 100 

equally spaced nodes. Risk increases as we approach    and   , but not   . This is because 

eigenvectors are the critical points of the Rayleigh quotient 
    

   
, where the numerator is the 

variance of the basket. Consider the optimization program         , subject to      , 

with a Lagrangian  (   )        (     ). Applying first order conditions on  , 
  (   )

 
 (    )                     . But that is precisely the 

generalized eigenvalue problem. So, finding the largest eigenvalue of V,          
    , 

leads us to the maximum, which is achieved by the first eigenvector,   . Furthermore, because 

           
  

    

  
   

, gives a Rayleigh quotient, all critical points (and extreme values in 

particular) of this optimization program are derived from computing the eigenvectors of V, with 

stationary values in  . 

 

[FIGURE 7(a) HERE] 
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Because      , the eigenvector makes the covariance matrix behave like a mere scalar. A 

portfolio that concentrates risk in the direction of a particular eigenvector    (except for i=n), is 

investing in a single bet. This means that the investment universe that forms V will not be able to 

dissipate a “hit” that comes from the direction of   , a situation particularly dangerous in a risk-

on/risk-off environment. Figure 7(b) displays the risk of a portfolio that moves away from DRP 

and toward   , before (risk-off) and after (risk-on) a 100% increase in √     (standard deviation 

in the direction of   ). As we can see, investors holding the first eigenvector receive the entirety 

of the shock, and their risk is doubled. That shock would have been greatly dissipated by the 

investment universe if the investor had held a portfolio closer to DRP, instead of being so 

exposed to the first eigenvector. 

 

[FIGURE 7(b) HERE] 

 

3.3. THE MAXIMUM-DIVERSIFICATION SOLUTION 

Choueifaty and Coignard (2008) compute the vector of holdings that Maximize the 

Diversification Ratio (MDR), as defined by 

 

            
 

∑     
 
   

   
 

(19) 
 

 

This diversification ratio is the ratio of weighted volatilities divided by the basket’s volatility, 

and it is closely related to our Eq. (10). MDR is an intuitive method that penalizes the risk 

associated with cross-correlations, as they are accounted by the denominator but absent in the 

numerator of the maximized ratio. Choueifaty, Froidure and Reynier (2011) show that the 

correlations of each leg to the MDR hedging basket are minimized and made equal.
1
 Figure 8 

presents the MDR solution to our example.             , and there is no way we can make 

CtB smaller for all legs. Now CtR values make more sense, because the leg with a negative 

holding is responsible for almost ½ of the total risk, with the other half going to the legs with a 

positive holding. Among the “long” legs the risk is not equally spread, because the correlation 

between “DM1 Index” and “ES1 Index” (about 0.98) is greater than the correlation between 

“FA1 Index” and “ES1 Index” (about 0.95). So the MDR result seems intuitive and preferable to 

the ERC result. 

 

[FIGURE 8 HERE] 

 

However, if we look more closely into this MDR result, we will find something not entirely 

satisfactory. The problem is, there are subsets of instruments that, combined, exhibit greater 

correlation to the overall basket. Figure 8 shows that, even though the exposure is perfectly 

balanced at the leg level, this hedging basket’s performance may still be dominated by some 

groups of legs. In particular, there is an approx. 0.36 correlation between the subset made of 

(“ES1 Index”, “DM1 Index”) and the overall basket. Like in the ERC case, that could be a source 

of losses should there be a correlation break between large-cap and mid-cap stocks, as witnessed 

most recently during the 2008 financial crisis. Furthermore, Choueifaty and Coignard (2008) 

                                                 
1
 As we will show in the next Section, this is equivalent to a MMSC where only subsets of one instrument are taken 

into consideration. 
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acknowledge that the solution may not be unique or robust, particularly with ill-conditioned 

covariance matrices. Adding some structure to the optimization program would alleviate these 

problems. 

 

Succinctly, although MDR is to some extent preferable to ERC, it does not address the problems 

of uniqueness of solution and balanced exposure of subsets of legs to the overall basket. 

 

3.4. THE MINI-MAX SUBSET CORRELATION SOLUTION 

We denote subset correlation as the correlation of a subset of instruments to the overall basket. 

MMSC’s goal is to prevent that any leg or subset of legs dominates the basket’s performance, as 

measured by its subset correlations. This additional structure adds the robustness and uniqueness 

of solution that were missing in ERC and MDR. MMSC baskets are also more resilient to 

structural breaks, because this approach minimizes the basket’s dependency to any particular leg 

or subset of legs. Suppose for instance that      rises and as a result the correlation of the basket 

to those legs and subsets most exposed to the third principal component increases by a function 

of      . Because MMSC provided the most balanced exposure, it will generally be the least 

impacted basket. We will illustrate this point with an example in Section 3.5. 

 

When we were dealing with 2 instruments, the only subsets were the instruments themselves, so 

the only subset correlations were the CtBs. The MMSC solution coincided with the MDR 

solution. But now that n=3, we can compute correlations to 6 subsets (the 3 single legs plus the 3 

possible pairs of legs), and we need to distinguish between both procedures. The solution can be 

characterized as  

 

             
 

{   
 

|       
|} (20) 

 

 

where i=1,…,N subsets,   ∑ (
 
 
)   

     (      ) is the number of subsets (excluding the 

empty set and the full set),     ∑     ̌   
 
   , and  ̌  is the vector of holdings of subset i. For 

example, if the i-th subset is formed by instruments 1 and 2,  ̌  will be a vector with entries 

 ̌      ,  ̌       and  ̌      for      . 

 

N>n when n>2. As n grows, we will have many more subsets (N) than instruments (n). Ideally 

we would like to minimize all subset correlations and bring them as close to each other as 

possible, hence the name MMSC (Mini-Max Subset Correlations). Appendix 3 presents an 

algorithm for computing the MMSC solution for any dimension, and Appendix 4 provides the 

code in Python. Figure 9 shows the results for our example. The greatest correlation of any 

subset to the overall basket is about 0.185, significantly lower than in the ERC and MDR cases.  

 

[FIGURE 9 HERE] 

 

     
 

 
 seems to point at a concentration of risk in the “FA1 Index” leg. This is an artifact of 

computing CtR when one of the legs has low correlation to the basket. In this instance, CtR will 

not be able to accurately split risk among the instruments. From Appendix 1 we know that  
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  because        

   . 
  

   
  , because this is a hedging basket. Thus, a very small 

change in the holdings could transfer a substantial amount from      to     , which is counter-

intuitive. We can also see that, despite the high      value,      is virtually the same as the 

correlation of the subset formed by (“FA1 Index”, “ES1 Index”) to the basket, or the correlation 

of the subset (“ES1 Index”, “DM1 Index”) to the basket. In contrast, CtB is more stable, with 
        

   
 

  

   
. The derivative of the correlation to the basket does not have a factor    or a 

second power on 
  

   
  , thus it is more resilient to small changes in    (another reason why 

MMSC will tend to be more robust than ERC):
2
 

 

         

   
 

  

   
(         

 ) 
(22) 

 

 

Summarily, MMSC provides the basket with the most balanced exposure to any of its legs or 

subsets of legs. The solution is also unique and more robust, virtue of the 6 conditions imposed 

on only 2 holdings. The fact that     as n grows provides a competitive advantage for users 

with access to high performance computing (HPC) facilities, who can deploy a solution 

unavailable to investors with limited computational power. When n>30, the computations 

involved would present a challenge for today’s supercomputers. However, that obstacle could be 

surmounted by clustering the legs into highly correlated blocks, as proposed in Appendix 5. A 

second alternative is to limit the maximum size of the subsets evaluated, which can be done 

through the parameter maxSubsetSize in the Python code provided in Appendix 4. 

 

3.5. GEOMETRIC INTERPRETATION 

As we did in the two-dimensional case, we can understand the previous three-dimensional results 

in geometric terms. For the initial position    [
    
 
 

], the factor loadings are    
 

[
         
          
         

]. As expected,    is not well-hedged, because the    
 vector is nowhere close to 

the orthogonal directions with least variance. ERC is better hedged, with      
 

[
        

          
          

]. For MDR, we get      
 [

        
          
          

], and for MMSC we get       
 

[
        

          
          

]. So it would appear as if, in this particular example, MMSC did a worse job than 

MDR and ERC. Figure 10 tells us that this is not the case. 

 

                                                 
2
 See López de Prado and Leinweber (2012) for a proof. 
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[FIGURE 10 HERE] 

 

The first table reports the factor loadings of the three balanced hedging baskets to the first 

principal component. Although       
( )           is slightly greater than for the other 

baskets, when it comes to the subsets we find that       
 is generally the least exposed. This is 

an important feature because, in the case of a structural break
3
, MMSC’s hedging basket will 

tend to be the least impacted. Figure 10 shows that MMSC is the least exposed to shocks in the 

direction of any principal component. This is the result of minimizing the correlation of any 

subset to the overall basket. From Figures 4, 8 and 9, we know that all three balanced baskets 

had the greatest exposure to subset (2,3). This subset, composed of (“ES1 Index”, “DM1 

Index”), is particularly sensitive to shocks in the direction of the third principal component (see 

panel 3 in Figure 10). Figure 11 displays the covariance and correlation matrices that result from 

a shock in the direction of that third principal component, in particular a 25% increase to     . 

The differences between both correlation matrices seem negligible, and yet the impact on ERC 

and MDR is significant. Figure 12 reports how, as a consequence of this structural break, the 

correlations of each balanced basket to subset (2,3) are impacted. As expected, MMSC is the 

only basket with a relatively low exposure of around 0.23 (compared to the previous 0.19), while 

ERC and MDR’s go up to approx. 0.31 and 0.41 respectively. 

 

[FIGURE 11 HERE] 

 

[FIGURE 12 HERE] 

 

 

4. TRADING BASKETS 

As we have seen earlier, a hedging basket attempts to minimize the exposure to any of its 

constituents. In contrast, a trading basket tries to determine the holdings such that the exposure is 

maximized. With that difference in mind, the problem is again how to determine a basket with 

balanced exposures, i.e. that no particular leg or subset of legs is responsible for the overall 

basket’s performance. 

 

As discussed earlier, MDR’s goal is to maximize diversification by minimizing all CtB. This is 

consistent with a hedging problem. As originally formulated, it cannot be used to compute a 

trading basket. 

 

The ERC procedure can sometimes deliver a trading basket by chance. The result reported in 

Figure 5 happened to be a trading basket, even though we were searching for a hedging basket. 

This is because ERC does not have a way to control for those two different objectives. ERC may 

converge to one or the other depending on the initial seed (e.g., a vector of ones in the case of 

Figure 5). This problem could be circumvented by trying different seeds. As expected, the 

resulting ERC trading basket for our example is balanced in terms of contribution to risk (CtR). 

 

                                                 
3
 In this context, we speak of a “structural break” with the meaning of a change in the direction of a principal 

component. This is what occurs if, for example, we stretch the location-dispersion ellipsoid in the direction of an 

eigenvector. See Meucci (2009a), Chapter 3. 
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When used to compute a trading basket, MMSC will maximize the minimum subset correlation 

(as opposed to minimizing the maximum subset correlation). In every iteration, it will push the 

lowest subset correlation to a higher value, thus raising the average correlation, until there is no 

way to increase any correlation without reducing another. 

 

         
 

{   
 

|       
|} (23) 

 

 

where i=1,…,N subsets,   ∑ (
 
 
)   

     (      ) is the number of subsets,     

∑     ̌   
 
   , and  ̌  is the vector of holdings of subset i. Figure 13 shows the trading basket 

computed by MMSC on the same three instruments used in the previous section. MMSC 

recognizes that a linear combination of “FA1 Index” and “DM1 Index” makes “ES1 Index” 

redundant, thus giving     . As a result, MMSC spreads risk equally between “FA1 Index” 

and “DM1 Index”, rather than between three instruments (including a redundant position on 

“ES1 Index”), like the ERC approach did. Perhaps more important is that MMSC actively 

searches for this trading basket, rather than arriving at it thanks to a fortunate seed. Appendix 4 

provides the Python code that computes MMSC hedging and trading baskets, depending on the 

user’s preference. 

 

[FIGURE 13 HERE] 

 

 

5. CONCLUSIONS 

PCA is a good theoretical option for computing hedging baskets. One drawback of the PCA 

approach is that the interpretation of the n-th component is not necessarily intuitive in terms of 

the basket’s constituents. This is due to the change of basis involved in PCA’s eigen-

decomposition of variance, and for n>3 it is usually difficult to visualize the intuition behind the 

resulting eigenvectors. A case in point was the solution delivered by the DRP basket which, 

although mathematically correct, it defied common sense. 

 

For this reason, practitioners typically rely on approaches that allow them to relate the basket’s 

holdings to the statistical properties of the basket’s constituents. Such is the purpose of balanced 

hedging baskets, which are characterized by spreading risk or exposure across the baskets’ 

constituents, so that the combined risk is not only minimal but also well distributed. Although 

the solution is not a perfect hedge (i.e., a minimum variance portfolio orthogonal to the main 

principal components), there is no change of basis involved and therefore the basket can be 

understood in terms of its constituents. 

 

How well risk is spread is measured by the Contribution to Risk (CtR) from each leg. Similarly, 

how well exposure is spread is measured by each leg’s Correlation to the Basket (CtB). Three 

methods have been proposed to compute balanced hedging baskets: Equal-Risk Contribution 

(ERC), Maximum Diversification (MDR) and Mini-Max Subset Correlation (MMSC). All three 

are theoretically sound and useful procedures, and the purpose of this paper is not to disqualify 

any of them but to examine the properties of their respective solutions. 
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ERC computes the vector of holdings such that the CtR of each leg is equal. Absent of 

constraints, the solution is not unique and it could lead to hedging baskets riskier than any of the 

individual holdings. This problem can be circumvented by trying alternative seeds, however the 

procedure per se does not control the outcome. Also, although the solution always delivers equal 

CtR per leg, the CtB could be very high for some legs, evidencing concentration of exposure. 

 

MDR is equivalent to ERC, with the difference that instead of equalizing CtR, it attempts to 

achieve equal CtB per leg. Solutions tend to be more intuitive and robust, however they are not 

unique. Another caveat is that, although each leg’s CtB may be equal, there may be subsets of 

legs that are highly exposed, i.e. they will dominate the overall basket’s performance. 

 

MMSC computes a hedging basket for which not only CtB are as low as possible, but also the 

correlations of subsets of legs to the overall basket are minimized. The outcome is a basket 

which performance is not dominated by any of its constituents, individually or in subsets. This 

feature is important, because it makes the basket more resilient to structural breaks. Since the 

number of subsets of legs is necessarily greater than the number of legs, the system is over-

determined: There may be no solution that equalizes all subset correlations, in which case 

MMSC computes the Mini-Max approximation. Another advantage of MMSC is that it can also 

be used to compute trading baskets. These are characterized by a vector of holdings such that the 

correlation of each leg or subset of legs to the overall basket is maximized (rather than 

minimized, like in the hedging case). 

 

One caveat of MMSC is that, for very large baskets, the number of subsets can be enormous, and 

the calculation of its solution may require access to high performance computing (HPC) 

facilities, such as the NERSC facility at Lawrence Berkeley National Laboratory.
4
 We hope that 

readers will find helpful the numerically efficient algorithms provided in the Appendices. 

  

                                                 
4
 Additional details are available at: http://www.nersc.gov/users/computational-systems/  

http://www.nersc.gov/users/computational-systems/
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APPENDICES 

 

 

A.1. COMPUTING THE ERC BASKET FOR n-INSTRUMENTS 

A.1.1. TAYLOR’S EXPANSION 

A second-degree Taylor expansion of the CtR function takes the form: 
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We therefore need to compute an analytical expression for the first and second partial 

derivatives. 

 

A.1.2. FIRST DERIVATIVE 

From Eq. (6) we know that      
    

   

  

   
, thus 

 

 
     

   
 

 [
    

   

  

   
]

   
 

     

   
 

  

   
 

 [
  

   
]

   

    

   
 

(25) 
 

 

We already know that 
    

   
 

       

     
 from Eq. (4). We need to compute 
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. From 

López de Prado and Leinweber (2012) we also know that 
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We therefore conclude that 
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A.1.3. SECOND DERIVATIVE 

Next, we will obtain the expression for 
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We need to determine the analytical expressions for 
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 and 
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with the conclusion that 
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A.1.4. STEP SIZE 

Finally, assuming ∑
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   , we can replace these derivatives into Taylor’s 

expansion: 
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giving us the expression 
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Let us define 
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Then, for     we will choose the smallest step size (to reduce the error due to Taylor’s 

approximation, which grows with |   |): 
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(36) 

 

 

For    , the solution coincides with a first degree Taylor approximation: 
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(37) 

 

 

 

A.2. THE ERC ALGORITHM 

We know that the      basket must verify that all Contributions to Risk are equal:      
 

 
   . 

Thus, for any i we can compute the step size     so that any deviation from that value,       
 

 
     , could be corrected through the expression in Eq. (36) (if    ) or Eq. (37) (if    ). 

The following algorithm computes the {    } vector, determines for which leg i the deviation 
|     | is greatest, and computes the corresponding     that reduces such deviation in the next 

iteration. The algorithm stops when either the desired accuracy has been achieved, or iterations 

exceed a user-designated limit. Figures 14 and 15 show how holdings converge to their optimal 

values for the examples of ERC hedging and trading baskets discussed in Section 3 and 4. 
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#!/usr/bin/env python 

# ERC basket optimization algo 

# On 20120516 by MLdP <lopezdeprado@lbl.gov> 

 

import numpy as np 

import scipy as sp 

 

#------------------------------------------- 

#------------------------------------------- 

class ERC: 

    def __init__(self,covar): 

        # Class constructor 

        self.covar=covar 

        self.weights,self.ctr,self.ctb,self.tErr,self.iter=0,0,0,0,0 

#------------------------------------------- 

    def solve(self,precision,seed): 

        # Compute the ERC holdings and stats 

        w=np.zeros(shape=(seed.shape[0],seed.shape[1])) 

        w[:]=seed[:] 

        iter,n,grad=0,len(w),range(3) 

        while True: 

            #1) Normalize holdings 

            w=w/w[0] 

            #2) Compute CtB, CtR 

            iter+=1 

            risk=float((w.transpose()*self.covar*w)[0,0])**0.5 

            tErr,mErr,iErr=0,0,0 

            ctb,ctr,err=[0 for i in range(n)],[0 for i in range(n)],[0 for i in range(n)] 

            for i in range(n): 

                for j in range(n): 

                    ctb[i]+=w[j,0]*self.covar[i,j]/float(self.covar[i,i])**.5 

                ctb[i]=ctb[i]/risk*get_Sign(w[i,0]) 

                ctr[i]=abs(w[i,0])*self.covar[i,i]**.5/risk*ctb[i] 

                err[i]=1./n-ctr[i] 

                tErr+=err[i]**2 

                # Determine which leg to change 

                if abs(err[i])>abs(mErr): 

                    mErr=err[i] 

                    iErr=i 

            #3) Exit conditions 

            tErr=(tErr/n)**.5 # Root mean squared deviation 

            if tErr<10**-precision:break 

            if iter>10**precision:break 

            #4) CtR's Taylor expansion 

            grad[0]=-err[iErr] 

            grad[1]=w[iErr,0]*self.covar[iErr,iErr]/risk**2*(1-2*ctb[iErr]**2)+ \ 

                self.covar[iErr,iErr]**.5*ctb[iErr]/risk 

            grad[2]=self.covar[iErr,iErr]/risk**2*(1-2*ctb[iErr]**2)- \ 

                ctb[iErr]*w[iErr,0]*(self.covar[iErr,iErr]**.5/risk)**3*(2-3*ctb[iErr]**2) 

            #5) Step size 

            if grad[2]!=0: 

                delta=(grad[1]**2-4*grad[2]*grad[0])**.5 

                if grad[1]>=0: 

                    delta=(-grad[1]+delta)/(2.*grad[2]) 

                else: 

                    delta=(-grad[1]-delta)/(2.*grad[2]) 
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            else: 

                delta=-grad[0]/grad[1] 

            w[iErr,0]+=delta 

        self.weights,self.ctr,self.ctb,self.tErr,self.iter=w,ctr,ctb,tErr,iter 

#------------------------------------------- 

    def get_Seed(self,col): 

        # Seeds for hedging basket, based on alternating OLS holdings 

        a=np.zeros(shape=(self.covar.shape[0],self.covar.shape[1])) 

        a[:]=self.covar[:] 

        a=sp.delete(a,col,0) 

        a=sp.delete(a,col,1) 

        a=np.linalg.inv(a) 

        b=self.covar[:,col] 

        b=sp.delete(b,col,0) 

        c=a*b 

        c=np.insert(c,col,-1,axis=0) 

        return -c 

#------------------------------------------- 

#------------------------------------------- 

def get_Sign(number): 

    # Sign of the holding, needed to compute CtB 

    if number==0:return 0 

    if number>=0:return 1 

    if number<=0:return -1 

#------------------------------------------- 

def main(): 

    #1) Inputs (covariance, optional seed) --- to be changed by the user 

    precision=5 

    covar=np.matrix('846960.805351971,515812.899769821,403177.059835136; \ 

                    515812.899769821,351407.396443653,280150.614979364; \ 

                    403177.059835136,280150.614979364,232934.832710412') 

    #seed=np.mat(np.ones((covar.shape[0],1))) #--- If a vector of ones is used as seed 

    #2) Instantiate class 

    erc=ERC(covar) 

    #3) Compute and report solution for alternative seeds 

    for i in range(covar.shape[0]): 

        seed=erc.get_Seed(i) #--- Seed for hedging baskets 

        erc.solve(precision,seed) 

        # Report results 

        print '##### SOLUTION '+str(i+1)+' #####' 

        print '##### Holdings #####' 

        print erc.weights 

        print '##### CtR #####' 

        print erc.ctr 

        print '##### CtB #####' 

        print erc.ctb 

        print '##### Stats #####' 

        print 'RMSD='+str(erc.tErr) 

        print '#Iter='+str(erc.iter) 

#------------------------------------------- 

# Boilerplate 

if __name__=='__main__': main() 

 

 

[FIGURE 14 HERE] 
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[FIGURE 15 HERE] 

 

 

A.3. COMPUTING THE MMSC BASKETS FOR n-INSTRUMENTS 

What follows is a synthesis of some of the results derived in López de Prado and Leinweber 

(2012). Please refer the reader to that publication for the detailed proofs. 

 

For any two subsets i and j, we can define the following variables: 
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where i=1,…,N subsets,   ∑ (
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     (      ) is the number of subsets,     

∑     ̌   
 
   , and  ̌  is the vector of holdings of subset i. Then, for    : 
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And for    : 
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This result allows us to compute the step size    for subset i that will change the correlation 

between subset j and the basket,         
. This change in subset i can be backpropagated to the 

legs involved in that subset by multiplying the holdings of the legs that form subset i by (  
  ). For example, a change in subset i is backpropagated by setting the leg’s holdings to    

 ̌   (    ), j=1,…,n, for the next iteration (see function get_Backpropagate in Section A.4). By 

doing so, we can balance the exposure to a subset j, even if it is composed of instruments that are 

not tradable or subject to constraints. 

 

 

A.4. THE MMSC ALGORITHM 

The hedging basket is determined by minimizing the maximum        
, where i=1,…,N 

represents any of the N subsets of legs (including the n legs). In each iteration, we identify the 

subset j for which         
 

 

 
(∑        

 
   )         

 is lowest. This is the subset whose 

correlation we would like to bring down to the average value. This can be done by changing the 
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holdings of that subset j or, if it is not tradable or its holding is constrained, by changing any 

other subset’s holdings i. By reducing our exposure to the subsets with above average 

correlations, we bring that average down until there is no possibility to keep reducing        
 

without producing some other        
        

, at which point the solution has been found. 

 

For a trading basket, the algorithm is essentially the same, with the only difference that at each 

iteration we identify the subset j for which         
 

 

 
(∑        

 
   )         

 is highest. This 

Maximizes the Minimum Subset Correlation (the purpose of a trading basket), as opposed to 

Minimize the Maximum Subset Correlation (the goal of a hedging basket). 

 

 
#!/usr/bin/env python 

# MMSC basket optimization algo 

# On 20120516 by MLdP <lopezdeprado@lbl.gov> 

 

import numpy as np 

from scipy import delete 

from itertools import combinations 

from math import log 

#------------------------------------------- 

#------------------------------------------- 

class MMSC: 

    def __init__(self,covar,maxSubsetSize): 

        # Class constructor 

        self.covar=covar 

        if maxSubsetSize>=covar.shape[0]:maxSubsetSize=covar.shape[0]-1 

        self.subsets=self.get_Subsets(range(covar.shape[0]),maxSubsetSize) 

        self.weights,self.tErr,self.iter=0,0,0 

        self.scorrel=0,0 

#------------------------------------------- 

    def solve(self,precision,seed,hedge=True): 

        # Compute the MMSC holdings and stats 

        w=np.zeros(shape=(seed.shape[0],seed.shape[1])) 

        weights=np.zeros(shape=(seed.shape[0],seed.shape[1])) 

        w[:]=seed[:] 

        iterTotal,iterW,aim,msc,n,N,grad=0,0,0,1,len(w)-1,len(self.subsets)-1,range(3) 

        if hedge==False:msc=0 # For a trading basket 

        loop=True 

        #1) Iterations 

        while loop==True: 

            iterTotal+=1 

            iterW+=1 

            #2) Aim size 

            if iterW==1: 

                aim=max(1,aim/(1+log(n))) 

            else: 

                aim=min(10**6,aim*(1+log(n))) 

                w[:]=weights[:] 

            #3) Iterate subsets 

            for i in range(N): 

                #4) Normalize holdings 

                w=w/w[0] 
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                #5) Compute subset correl matrix 

                scovar=self.get_SubsetCovar(w) 

                scorrel=get_Correl(scovar) 

                #6) Determine which leg to change 

                avg=(sum(scorrel[:,-1])-1)/N 

                err=[avg-scorrel[j,-1] for j in range(N)] 

                iErr,tErr=0,0 

                for j in range(N): 

                    tErr+=err[j]**2 

                    if hedge==True and scorrel[j,-1]>scorrel[iErr,-1]:iErr=j 

                    if hedge==False and scorrel[j,-1]<scorrel[iErr,-1]:iErr=j 

                #7) Store new optimum 

                if (hedge==True and scorrel[iErr,-1]<msc) or \ 

                    (hedge==False and scorrel[iErr,-1]>msc): 

                    weights[:]=w[:] 

                    iterW=0 

                    msc=scorrel[iErr,-1] 

                #8) CtB's Taylor expansion 

                grad[0]=err[iErr]/aim 

                grad[1]=-(scovar[i,i]/scovar[-1,-1])**.5*(scorrel[i,iErr]-scorrel[iErr,-1]* \ 

                    scorrel[i,-1]) 

                grad[2]=.5*scovar[i,i]/scovar[-1,-1]*(scorrel[iErr,-1]+scorrel[i,-1]* \ 

                    (2*scorrel[i,iErr]-3*scorrel[iErr,-1]*scorrel[i,-1])) 

                #9) Step size 

                if grad[2]!=0: 

                    delta=(grad[1]**2-4*grad[2]*grad[0])**.5 

                    if grad[1]>=0: 

                        delta=(-grad[1]+delta)/(2.*grad[2]) 

                    else: 

                        delta=(-grad[1]-delta)/(2.*grad[2]) 

                elif grad[1]!=0: 

                    delta=-grad[0]/grad[1] 

                #10) Backpropagate subset step back to legs 

                w=self.get_Backpropagate(w,delta,i) 

                #11) Exit conditions 

                tErr=(tErr/N)**.5 # Root mean squared deviation 

                #if tErr<10**-precision:loop=False # –If exit by convergence 

                if iterTotal>10**precision:loop=False 

        scovar=self.get_SubsetCovar(weights) 

        scorrel=get_Correl(scovar) 

        self.weights,self.tErr,self.iter,self.scorrel=weights,tErr,iterTotal,scorrel 

#------------------------------------------- 

    def get_Seed(self,col,hedge): 

        # Seed for basket 

        if hedge==True: 

            # Seeds for hedging basket, based on alternating OLS holdings 

            a=np.zeros(shape=(self.covar.shape[0],self.covar.shape[1])) 

            a[:]=self.covar[:] 

            a=delete(a,col,0) 

            a=delete(a,col,1) 

            a=np.linalg.inv(a) 

            b=self.covar[:,col] 

            b=delete(b,col,0) 

            c=a*b 

            c=np.insert(c,col,-1,axis=0) 

            return -c 
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        else: 

            # Seeds for trading basket, based on the leg's betas to the basket 

            a=np.zeros(shape=(self.covar.shape[0],1)) 

            for b in range(self.covar.shape[0]): 

                a[b,0]=self.covar[b,b]/self.covar[0,0] 

            return a 

#------------------------------------------- 

    def get_Backpropagate(self,w,delta,subset): 

        # Backpropagates subset delta to the legs 

        for leg in self.subsets[subset]: 

            w[leg]=w[leg]*(1+delta) 

        return w 

#------------------------------------------- 

    def get_Subsets(self,iterable,maxSubsetSize): 

        # Generate all subsets up to maxSubsetSize, but including the full set 

        subsets=[item for item in combinations(iterable,1)] 

        for subsetSize in range(2,maxSubsetSize+1): 

            for item in combinations(iterable,subsetSize): 

                subsets.append(item) 

        for item in combinations(iterable,self.covar.shape[0]): 

            subsets.append(item) 

        return subsets 

#------------------------------------------- 

    def get_SubsetCovar(self,w): 

        # Computes covariances among all subsets 

        subsetCovar=np.zeros(shape=(len(self.subsets),len(self.subsets))) 

        for i in range(len(self.subsets)): 

            for j in range(i,len(self.subsets)): 

                for k in self.subsets[i]: 

                    for l in self.subsets[j]: 

                        subsetCovar[i,j]+=w[k]*w[l]*self.covar[k,l] 

                subsetCovar[j,i]=subsetCovar[i,j] 

        return subsetCovar 

#------------------------------------------- 

#------------------------------------------- 

def get_Sign(number): 

    # Sign of the holding, needed to compute CtB 

    if number==0:return 0 

    if number>=0:return 1 

    if number<=0:return -1 

#------------------------------------------- 

def get_Correl(covar): 

    # Correl matrix from covar 

    correl=np.zeros(shape=(covar.shape[0],covar.shape[1])) 

    for i in range(covar.shape[0]): 

        for j in range(i,covar.shape[1]): 

            correl[i,j]=covar[i,j]/(covar[i,i]*covar[j,j])**.5 

            correl[j,i]=correl[i,j] 

    return correl 

#------------------------------------------- 

def main(): 

    #1) Input parameters --- to be changed by the user 

    precision=3 

    covar=np.matrix('846960.805351971,515812.899769821,403177.059835136; \ 

                    515812.899769821,351407.396443653,280150.614979364; \ 

                    403177.059835136,280150.614979364,232934.832710412') 
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    maxSubsetSize=covar.shape[0]-1 # Set maxSubsetSize=1 for MDR 

    hedge=True # True for a hedging basket, False for trading basket 

    #2) Instantiate class 

    mmsc=MMSC(covar,maxSubsetSize) 

    #3) Compute and report solution for alternative seeds 

    for i in range(covar.shape[0]): 

        seed=mmsc.get_Seed(i,hedge) #--- Seed for baskets 

        mmsc.solve(precision,seed,hedge) 

        # Report results 

        print '##### SOLUTION '+str(i+1)+' #####' 

        print '##### Holdings #####' 

        print mmsc.weights 

        print '##### Subset Correl #####' 

        print mmsc.scorrel 

        print '##### Stats #####' 

        print 'RMSD='+str(mmsc.tErr) 

        print '#Iter='+str(mmsc.iter) 

        if hedge==False:return 

#------------------------------------------- 

# Boilerplate 

if __name__=='__main__': main() 

 

 

Figures 16 and 17 show how holdings converge to their optimal values for the examples of 

MMSC hedging and trading baskets discussed in Section 3 and 4. 

 

[FIGURE 16 HERE] 

 

[FIGURE 17 HERE] 

 

This algorithm can also be used to compute the MDR solution, by setting the parameter 

maxSubsetSize=1. This is equivalent to a MMSC optimization where subsets of more than one 

leg are ignored. maxSubsetSize can also be used to skip evaluating correlations for subsets of 

larger size, which is convenient should N reach an impracticable order of magnitude. 

 

 

A.5. COVARIANCE CLUSTERING 

The number of subsets follows a power law on the number n of instruments involved:   

∑ (
 
 
)   

     (      ), where we exclude the empty set and the full set. For a sufficiently 

large n, the number of subsets N to be evaluated per iteration makes MMSC impracticable. But 

because n is large, it also becomes more likely that some of the instruments involved are highly 

correlated. An approach commonly used to reduce the dimension of a problem applies PCA to 

identify which orthogonal directions add least variance, so that they can be dropped. There are at 

least three arguments for discarding such procedure in the context of balanced baskets: First, a 

key reason for favoring balanced baskets was precisely that they did not require a change of 

basis, so that the solution could be intuitively connected to the original instruments and subsets 

of them. Second, “dropping” dimensions involves the loss of information, even if minimal. 

Third, in a capital allocation context, we cannot short funds or portfolio managers. 
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In this section we propose a new method for reducing the dimension of a covariance matrix 

without requiring a change of basis or dropping dimensions. The intuition is to identify which 

tuples of matrix columns point in neighboring directions, in which case they are redundant and 

can be clustered together. This can be evaluated by carrying out an eigen-decomposition of the 

matrix and evaluating which columns have the largest loadings in the orthogonal directions that 

contribute least variance. When such tuples are clustered together they form a new column that is 

less redundant, thus contributing to a more parsimonious distribution of the variance across the 

orthogonal directions. The actual clustering is done by recursively aggregating any two columns 

(i,j), applying the property that 

 

         [(     [   ])(   [ ])]

  [(   [ ]     [ ])(   [ ])]
  [(   [ ])(   [ ])  (   [ ])(   [ ])]
           

(41) 
 

 

                                        (42) 
 

 

The algorithm identifies what column aggregation minimizes the matrix’s condition number at 

each iteration. In this way, we reduce n and, more importantly, N, while making the covariance 

matrix less singular. One possible procedure would consist in computing, by brute force, all 

possible clustering outcomes, and determine the one for which the condition number is minimal. 

That would require ∑ (
 
 
)   

    covariance clustering operations, where m is the number of 

dimensions reduced. This is a very large number, considering that the reason for clustering was 

to avoid having to evaluate N subset correlations per iteration. Applying brute force does not 

seem to alleviate our computational problem. An alternative clustering strategy would consist in 

sequentially pairing columns of the covariance matrix, so that at each iteration we minimize the 

condition number. That strategy only requires ∑ (
     

 
)   

    ∑ (
 
 
)   

    covariance 

clustering operations. 

 

More precisely, suppose a covariance matrix V with elements      and i,j=1,…,n. We denote the 

matrix’s i-th eigenvalue by   , and its condition number by   
    {  }

    {  }
 

  

  
. We would like to 

reduce V’s order to a more manageable       , where       . The following 

algorithm clusters m elements of V until such requirement is met: 

 

1. If     , return   and exit. 

2. For each pair (   )     of columns of  , 

a. Let  ̃    be a copy of V. 

b. Insert in  ̃ 

i. column and row, n+1, with k elements,                 ,   . 

ii. diagonal element                                       . 

c. Strike down columns and rows i,j, giving  ̃ an order  ̃     . 

d. Compute {  ̃} for the resulting  ̃. 
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e. Store the value      
    {  ̃}

    {  ̃}
 

  ̃

  ̃
. 

3. Determine the (     )           
     

     

4. Prepare for the next iteration  

a. Replace V with the matrix  ̃ which clustered together elements (     ). 
b. Set    ̃. 

5. Loop to 1. 

 

The outcome is a clustered covariance matrix with three crucial properties: 

1. It has a smaller dimension, which enables calculations to be carried out in a feasible 

amount of time. 

2. It has a smaller condition number, and consequently it is less singular. Financial 

applications typically require the inversion of the covariance matrix, and near-singular 

covariance matrices are a major source of numerically unstable results. 

3. This clustering of the covariance matrix forms a disjoint-set data structure, whereby each 

original element will end up in only one cluster. Cluster constituents are equally (and 

positively) weighted, thus the sum of elements of the covariance matrix is kept constant 

across iterations. This is a key difference with respect to PCA, where each constituent 

forms part of each component, and weights are allowed to be negative.  

 

[FIGURE 18 HERE] 

 

A numerical example with illustrate how the algorithm works. Suppose that we are given a 

covariance matrix of the 88 most liquid futures contracts. Computing a MMSC hedging basket of 

that dimension seems quite impracticable. Even though no column may be derived as an exact 

linear combination of the rest, it is very likely that one column spans a vector in a very close 

angle to another column or a combination of columns. The algorithm above will identify those 

situations and form clusters of very similar instruments. Figure 18 shows how, beginning with a 

numerically ill-conditioned covariance matrix of 88 instruments (determinant greater than      , 

condition number of 486,546.1293), the covariance matrix is greatly improved by clustering. For 

example, for      , the condition number has dropped to a fraction of its original value 

(677.41739). As a result, the covariance matrix will now be less numerically ill-conditioned, and 

n can be reduced to a value for which the MMSC solution can be computed. 

 

We believe this algorithm will prove useful in many financial applications beyond basket 

construction, like in capital allocation and portfolio optimization problems. What follows is an 

implementation in Python code. The user simply needs to adjust the statement 

path='E:\HFT\Covariance.csv' with the path where a covariance matrix is stored in csv format. 

 

 
#!/usr/bin/env python 

# Covariance clustering algo 

# On 20120516 by MLdP <lopezdeprado@lbl.gov> 

 

import numpy as np 

from itertools import combinations 

from scipy import delete 
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#------------------------------------------- 

#------------------------------------------- 

class ClusterCov: 

    def __init__(self,cov,minSize): 

        # Class constructor 

        self.cov=cov 

        self.minSize=minSize 

        self.cn=[] 

        self.clusters=[] 

#------------------------------------------- 

    def solve(self,clusterSize=2): 

        # Determine the optimal clustering of the covariance matrix 

        size=self.cov.shape[0] 

        bundles=[] 

        while self.cov.shape[0]>self.minSize: 

            cn=[] 

            comb=self.comb(range(self.cov.shape[0]),clusterSize) 

            for trial in comb: 

                # Copy matrix 

                cov=self.cov[:] 

                # Bundle 

                cov=self.bundle(cov,trial) 

                # Compute condition number 

                evalues=np.linalg.eigvalsh(cov) 

                cn_=max(evalues)/min(evalues) 

                cn.append(cn_) 

            # Determine optimal cluster 

            sol=self.findSolution(cn) 

            if sol<=0:break 

            # Store solution 

            self.cn.append(sol) 

            bundles.append(comb[cn.index(self.cn[-1])]) 

            self.cov=self.bundle(self.cov[:],bundles[-1]) 

        self.clusters=self.getClusters(bundles,size) 

        return 

#------------------------------------------- 

    def bundle(self,cov,indices): 

        # Bundle the covariance matrix 

        diag,a=0,0 

        # Add clustering column and row 

        for i in indices: 

            a+=cov[:,i] 

        # Compute diagonal element 

        for i in indices: 

            diag+=a[i] 

        cov=self.expandCov(cov,a,diag) 

        # Remove clustered columns and rows 

        for i in range(len(indices)): 

            cov=delete(cov,indices[i]-i,0) 

            cov=delete(cov,indices[i]-i,1) 

        return cov 

#------------------------------------------- 

    def expandCov(self,cov,array,diag): 

        # Expand the covariance matrix 

        b=array[:] 
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        b.shape=(b.shape[0],1) 

        cov=np.hstack((cov,b)) 

        b=np.append(array,diag) 

        b.shape=(1,b.shape[0]) 

        cov=np.vstack((cov,b)) 

        return cov 

#------------------------------------------- 

    def comb(self,iterable,groupSize): 

        # Generate all combinations 

        comb=[item for item in combinations(iterable,groupSize)] 

        return comb 

#------------------------------------------- 

    def findSolution(self,cn): 

        # Find the optimal solution among candidates 

        sol=max(cn) 

        for i in cn: 

            if i<sol and i>0:sol=i 

        return sol 

#------------------------------------------- 

    def getClusters(self,bundles,size): 

        # Determine clusters' constituents 

        clusters=range(size) 

        for i in bundles: 

            a=[] 

            for j in i: 

                a.append(clusters[j]) 

            clusters.append(a) 

            for j in range(len(i)): 

                clusters.pop(i[j]-j) 

        return clusters 

#------------------------------------------- 

#------------------------------------------- 

def main(): 

    # Example using the ClusterCov class 

    path='E:\HFT\Covariance.csv' 

    #0) Parameters 

    minSize=2 

    #1) Load the covariance matrix 

    cov=np.genfromtxt(path,delimiter=',') # numpy array 

    #2) Cluster 

    cluster=ClusterCov(cov,minSize) 

    cluster.solve() 

    3#) Report results 

    print cluster.cov.shape 

    print cluster.cov 

    print cluster.cn 

    print cluster.clusters 

    return 

#------------------------------------------- 

# Boilerplate 

if __name__=='__main__': main() 
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FIGURES 

 

 

 

 
Figure 1 – Covariance and Correlation matrices for 

the proposed hedging problem (two instruments) 

 

 

 
Figure 2 – Graphical interpretation of the alternative hedging baskets 

 

We can plot the original position (  ) as a vector in a two-dimensional space characterized by 

the eigen-decomposition of the covariance matrix from Figure 1. This vector lays in a direction 

very close to the first eigenvector, which is associated with the market risk component. If we 

hedge “FA1 Index” with “ES1 Index” using the MV or OLS procedures, the basket’s vector 

spans in a direction very close to the second eigenvector, which is associated with the spread 

risk. The MMSC and ERC procedures give a solution very similar to PCA’s without requiring a 

basis change. 

  

FA1 Index ES1 Index FA1 Index ES1 Index

FA1 Index 846960.8 515812.9 FA1 Index 1.000000 0.945486

ES1 Index 515812.9 351407.4 ES1 Index 0.945486 1.000000
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Figure 3 – Covariance and Correlation matrices for the proposed hedging problem (three 

instruments), with the corresponding eigenvectors and eigenvalues matrices 

 

 

 

 

 
Figure 4 – One possible ERC solution 

 

The second table in Figure 4 reports the correlation of the basket to each subset of legs, where 

the subset is identified by the legs it is made of. For example, subset (1,3) is composed of “ES1 

Index” and “DM1 Index”. 

 

 

 

 

 
Figure 5 – An alternative ERC solution 

 

 

  

FA1 Index ES1 Index DM1 Index FA1 Index ES1 Index DM1 Index

FA1 Index 846960.8 515812.9 403177.1 FA1 Index 1.000000 0.945486 0.907710

ES1 Index 515812.9 351407.4 280150.6 ES1 Index 0.945486 1.000000 0.979194

DM1 Index 403177.1 280150.6 232934.8 DM1 Index 0.907710 0.979194 1.000000

FA1 Index ES1 Index DM1 Index FA1 Index ES1 Index DM1 Index

FA1 Index 0.774883836 -0.62081023 0.118952497 FA1 Index 1381000.26 0 0

ES1 Index 0.495126356 0.479137368 -0.72476015 ES1 Index 0 45883.18712 0

DM1 Index 0.39294393 0.620501441 0.67865531 DM1 Index 0 0 4419.589178

INSTRUMENTS HOLDINGS CtB CtR

FA1 Index 1000 0.14 0.33

ES1 Index -4110 0.05 0.33

DM1 Index 3274 0.08 0.33

ERC

Subsets 1 2 3 1,2 1,3 2,3

1,2,3 0.135702 0.051251 0.079026 0.156600 0.102101 0.264190

INSTRUMENTS HOLDINGS CtB CtR

FA1 Index 1000 0.97 0.33

ES1 Index 1515 0.99 0.33

DM1 Index 1885 0.98 0.33

ERC

Subsets 1 2 3 1,2 1,3 2,3

1,2,3 0.969597 0.993448 0.980552 0.995030 0.998350 0.992132
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Figure 6 – The DRP solution 

 

Although the DRP method is not a balanced basket approach, we report its solution here to 

illustrate the point that procedures which require a change of basis may yield rather unintuitive 

solutions. 

 

 

 
Figure 7(a) – Risk as we move away from DRP and towards the eigenvectors 

 

Risk increases as we approach a basket pointing in the direction of an eigenvector, except in the 

case of the eigenvector associated with the lowest eigenvalue. This is because eigenvectors are 

the critical points of the Rayleigh quotient 
    

   
, where the numerator is the variance of the 

basket. 

  

INSTRUMENTS HOLDINGS CtB CtR

FA1 Index 1000 -0.49 -0.12

ES1 Index 18338 -0.62 -1.75

DM1 Index -29896 0.77 2.87

DRP

Subsets 1 2 3 1,2 1,3 2,3

1,2,3 -0.492806 -0.619724 0.765364 -0.612224 0.778720 0.983147
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Figure 7(b) – Risk as we move away from DRP and towards the first eigenvector, 

in a risk-on and risk-off environment 

 

 

 

 
Figure 8 – The MDR solution 
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INSTRUMENTS HOLDINGS CtB CtR

FA1 Index 1000 0.08 0.16

ES1 Index -4736 0.08 0.49

DM1 Index 4031 0.08 0.34

MDR

Subsets 1 2 3 1,2 1,3 2,3

1,2,3 0.075176 0.075176 0.075176 0.142953 0.076735 0.362830
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Figure 9 – The MMSC solution 

 

 

 

 
Figure 10 – Factor loadings for all subsets to the three principal components 

 

  

INSTRUMENTS HOLDINGS CtB CtR

FA1 Index 1000 0.19 0.50

ES1 Index -3632 0.03 0.22

DM1 Index 2690 0.07 0.28

MMSC

Subsets 1 2 3 1,2 1,3 2,3

1,2,3 0.185136 0.034164 0.074562 0.185136 0.123218 0.185136

F1 ERC MDR MMSC Min Exposure

1 774.88384 774.88384 774.88384 774.88384

2 -2035.20002 -2344.85515 -1798.47923 -1798.47923

3 1286.55426 1584.11666 1057.18793 1057.18793

1,2 -1260.31618 -1569.97131 -1023.59540 -1023.59540

1,3 2061.43809 2359.00050 1832.07176 1832.07176

2,3 -748.64576 -760.73848 -741.29131 -741.29131

1,2,3 26.23808 14.14535 33.59253 14.14535

F2 ERC MDR MMSC Min Exposure

1 -620.81023 -620.81023 -620.81023 -620.81023

2 -1969.47783 -2269.13334 -1740.40141 -1740.40141

3 2031.60988 2501.49347 1669.41536 1669.41536

1,2 -2590.28806 -2889.94357 -2361.21164 -2361.21164

1,3 1410.79965 1880.68323 1048.60513 1048.60513

2,3 62.13206 232.36012 -70.98604 62.13206

1,2,3 -558.67818 -388.45011 -691.79627 -388.45011

F3 ERC MDR MMSC Min Exposure

1 118.95250 118.95250 118.95250 118.95250

2 2979.10190 3432.37145 2632.59280 2632.59280

3 2222.01391 2735.93534 1825.87424 1825.87424

1,2 3098.05440 3551.32394 2751.54529 2751.54529

1,3 2340.96641 2854.88784 1944.82674 1944.82674

2,3 5201.11581 6168.30679 4458.46704 4458.46704

1,2,3 5320.06831 6287.25928 4577.41954 4577.41954
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Figure 11 – Covariance and Correlation matrices following a structural break 

(25% increase of     ) 

 

 

 
Figure 12 – Impact of the structural break (25% increase of     ) on the exposures (subset 

correlations) of the previously computed baskets 

 

 

 

 
Figure 13 – The MMSC trading basket 

 

 

FA1 Index ES1 Index DM1 Index FA1 Index ES1 Index DM1 Index

FA1 Index 846976.4 515717.6 403266.3 FA1 Index 1.000000 0.944523 0.906912

ES1 Index 515717.6 351987.8 279607.2 ES1 Index 0.944523 1.000000 0.975424

DM1 Index 403266.3 279607.2 233443.7 DM1 Index 0.906912 0.975424 1.000000

Subsets 1 2 3 1,2 1,3 2,3

ERC 0.124551 0.063642 0.091317 0.168826 0.105856 0.311802

MDR 0.069397 0.085319 0.087978 0.154587 0.083732 0.408664

MMSC 0.170800 0.047725 0.087045 0.196876 0.124610 0.231720

INSTRUMENTS HOLDINGS CtB CtR

FA1 Index 1000 0.98 0.50

ES1 Index 0 0.99 0.00

DM1 Index 1907 0.98 0.50

MMSC

Subsets 1 2 3 1,2 1,3 2,3

1,2,3 0.976655 0.985343 0.976655 0.976655 1.000000 0.976655
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Figure 14 – Convergence of the ERC algorithm when computing the hedging basket 

 

This figure illustrates how the ERC algorithm found the optimal hedging basket after the 

instruments’ holdings converged over a number of iterations to a combination such that each leg 

contributed the same amount of risk. 
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Figure 15 – Convergence of the ERC algorithm when computing the trading basket 

 

This figure illustrates how the ERC algorithm found the optimal trading basket after the 

instruments’ holdings converged over a number of iterations to a combination such that each leg 

contributed the same amount of risk. 
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Figure 16 – Convergence of the MMSC algorithm when computing the hedging basket 

 

This figure illustrates how the MMSC algorithm found the optimal hedging basket after the 

instruments’ holdings converged over a number of iterations to a combination that minimized the 

maximum subset correlation. 
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Figure 17 – Convergence of the MMSC algorithm when computing the trading basket 

 

This figure illustrates how the MMSC algorithm found the optimal trading basket after the 

instruments’ holdings converged over a number of iterations to a combination that maximized 

the minimum subset correlation. 
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Figure 18 – Reducing the number of instruments (n) by clustering the covariance matrix (V) 

 

This figure illustrates how clustering the covariance matrix improves its numerical condition. We 

can reduce the number of instruments involved in the MMSC calculation to a value n for which 

the N subset correlations can be computed within a reasonable timeframe. 
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DISCLAIMER 

 

The views expressed in this paper are those of the authors and not necessarily reflect those of 

Tudor Investment Corporation. No investment decision or particular course of action is 

recommended by this paper. 
 


