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Abstract

This note presents a short history mathematical formulas involving the mathematical constant 7.

1 Background

The mathematical constant we know as m = 3.14159. . . is undeniably the most famous mathematical constant.
Mathematicians since the days of Fuclid and Archimedes have computed its numerical value in a search for
answers to questions such as: (a) is 7 a rational number? (i.e., is 7 the ratio of two whole numbers?) (b)
does 7 satisfy some algebraic equation with integer coefficients? (c) is m simply related to other constants of
mathematics?

Some of these questions were eventually resolved: In the late 1700s, Lambert and Legendre proved (by
means of a continued fraction argument) that 7 is irrational, which explains why its digits never repeat. Then
in 1882 Lindemann proved that 7 is transcendental, which means that 7 is not the root of any algebraic
equation with integer coefficients. Lindemann’s proof also settled, in the negative, the ancient Greek question
of whether a circle could be “squared” (i.e., whether one could construct, using ruler and compass, a square
with the same area as a given circle).

But many other questions remain. Notable of these is the persistent question of whether 7 is “normal,”
or, in other words, whether the digits of 7, in either decimal or binary or some other base, are statistically
flat in the sense that any finite-length string, such as “345,” eventually appears with the correct limiting
frequency (exactly 1/1000 in the case of a three-digit decimal string). Sadly, there are no significant results
in this area: mathematicians do not even know for sure that a “7” appears 1/10 of the time in the decimal
expansion of 7, or whether a “1” appears 1/2 of the time in the binary expansion of 7 (although based on
numerous statistical analysis, the answers appear to be “yes” in each case). If the conjecture of normality
could be rigorously proved, either in decimal or binary, this would establish that the digits of 7 are a provably
good source of pseudorandom numbers. Thus there is continuing interest in computing digits of 7, for both
theoretical and practical reasons. Also, computations of 7w have for many years been to test the integrity of
computer equipment — results using two different formulas should perfectly agree, except for few digits at
the end due to round-off error, or else a hardware or software error has occurred.

2 History

Here is a brief history of formulas used for 7. For additional information, see [1, Chap. 3].
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. Archimedes’ scheme (~250 BC; used by Archimedes to compute three digits; a variation was used by
the Chinese mathematician Tsu Chung-Chih to compute seven digits in the fifth century):

a0 = 2V3, by =3, then iterate:
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Both a, and b,, converge to m, with the error decreasing by a factor of approximately four each iteration.

. Newton’s formula (1666; used by Newton to compute 15 digits):
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. Machin’s formula (1706; used by Shanks in 1873 to compute 707 digits, although only 527 were correct):
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. Ferguson’s formula (1945; used by Reitwiesner in 1949 to compute 2037 digits):
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. Ramanujan’s series (1914; used by Gosper in 1988 to compute 17 million digits):
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. Brent-Salamin scheme (1976; used by various researchers, most recently by Takahashi in January 2009
to compute 2.65 trillion digits):

ap = 1, bp=1/V2, sop =1/2, theniterate:
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Then pi converges to 7, with each iteration approximately doubling the number of correct digits.



8. Chudnovskys’ series (1987; used by various researchers including by Bellard in December 2009 to compute
2.7 trillion digits, and by Kondo and Yee in August 2010 to compute five trillion digits):
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9. Borwein’s quartic scheme (1985; used by various researchers, most recently by Takahashi in January
2009 to compute 2.65 trillion digits):
a0 = 6—4v2, yo =2 — 1, then iterate:
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Then aj converges to m, with each iteration approximately quadrupling the number of correct digits.

10. The Bailey-Borwein-Plouffe (BBP) formula (1996; used by various researchers, most recently by Zse in
July 2010 to calculate a segment of 252 binary digits starting at the two quadrillionth (2 X 1015-th)
binary position; also used by Bellard in 2009 as part of his computation in December 2009 to 2.7 trillion
decimal digits, and by Kondo and Yee in August 2010 as part of their computation to five trillion decimal
digits):
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The BBP formula is most often used to compute a segment of binary digits beginning at an arbitrary
starting point, without needing to compute the digits that came before. How this is done is described
in [1, Chap. 3].
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