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Abstract

A 1996 paper by the author, Peter Borwein and Simon Plouffe showed that any
mathematical constant given by an infinite series of a certain type has the property
that its n-th digit in a particular number base could be calculated directly, without
needing to compute any of the first n — 1 digits, by means of a simple algorithm
that does not require multiple-precision arithmetic. Several such formulas were
presented in that paper, including formulas for the constants m and log2. Since
then, numerous other formulas of this type have been found. This paper presents a
compendium of currently known results of this sort, both proven and conjectured.
Experimentally obtained results which are not yet proven have been checked to high

precision and are marked with a z Fully established results are as indicated in the
citations and references below.

1 Introduction

This is a collection of formulas for various mathematical constants that are of the form
similar to that first noted in the “BBP” paper [13]. That article presented the follow-
ing formula for 7 (which was discovered using Ferguson’s PSLQ integer relation finding
algorithm [21, 14]):

[e.o]

_ZL 42 11 0
N 16* \8k+1 8k+4 8k+5 8Sk+6)/"

k=0

It was shown in [13] that this formula permits one to calculate the n-th hexadecimal or
binary digit of 7, without computing any of the first n — 1 digits, by means of a simple
algorithm that does not require multiple-precision arithmetic. A more recent paper by
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Borwein, Galway and Borwein showed that there are no other degree-1 BBP-type for ,
except those, such as Formula 1, whose “base” is a power of two. However, as we shall
see below, in the case of 72 there is both a base-2 formula (see Formula 26) and a base-3
formula (see Formula 73).

Further, as shown in [13], several other well-known constants also have this individual
digit-computation property. One of these is log2, based on the following centuries-old
formula:

= 1
k=1

In general, any constant C' that can be written in the form
— p(k)
C = —
,; q(k)b*’

where p and ¢ are integer polynomials, deg(p) < deg(q), and ¢(k) is nonzero for nonnega-
tive k, possesses this individual digit-computation property. Note that Formula 1 can be
written in this form, since the four fractions can be combined into one, yielding

- i AT + 151k + 1202
£ 16R(15 + 194k + T12k2 + 102453 + 512k%)

Since the publication of [13], other papers have presented formulas of this type for
various constants, including several constants that arise in quantum field theory [18, 19,
15]. More recently, interest in BBP-type formulas has been heightened by the observation
that the question of the statistical randomness of the digit expansions of these constants
can be reduced to the following hypothesis regarding the behavior of a particular class of
chaotic iterations [15]:

Hypothesis A (from the paper [15]). Denote by r, = p(n)/q(n) a rational-polynomial
function, i.e. p,q € Z[X]. Assume further that 0 < degp < deggq, with r, nonsingular
for positive integers n. Choose an integer b > 2 and initialize xy = 0. Then the sequence
x = (x9, X1, Te, . ..) determined by the iteration

x, = (bxp_1+r,) modl

either has a finite attractor or is equidistributed in [0, 1).

Assuming this hypothesis, it is shown in [15] that any BBP-type constant is either
normal to base b (i.e., any n-long string digits appears in the base b expansion with
limiting frequency b~"), or else it is rational. No proof of Hypothesis A was presented
in [15], and indeed it is likely that Hypothesis A is rather difficult to prove. However,
it should be emphasized that even particular instances of Hypothesis A, if established,
would have interesting consequences. For example, if it could be established that the
specific iteration given by xg = 0, and

1
T, = (2o,-1+ —)mod1
n



is equidistributed in [0, 1), then it would follow that log 2 is normal to base 2. In a similar
vein, if it could be established that the iteration given by zy = 0 and

120n? — 89n + 16 41
mo
512n* — 1024n3 + 712n2 — 206n + 21

T, = (16xn_1+

is equidistributed in [0, 1), then it would follow that 7 is normal to base 16 (and thus to
base 2 also).

One additional impetus for the study of BPP-type constants comes from a recent paper
by Lagarias [24], who demonstrates a connection to G-functions and to a conjecture of
Furstenberg from ergodic theory. Lagarias’ analysis suggests that there may be a special
signficance to constants that have BBP-type formulas in two or more bases — say both
a base 2 and a base 3 formula.

This paper is a compendium of the growing set of BBP-type formulas that have been
found by various researchers. Part of these formulas are collected here from previously
published sources. In other cases, formulas whose existence has been demonstrated in the
literature are presented here explicitly for the first time. Still others are new, having been
found using the author’s PSLQ program [14] in the course of this research.

The PSLQ integer relation algorithm [21] or one of its variants [14] can be used to
find formulas such as those listed in this paper as follows. Suppose, for example, that it
is conjectured that a given constant « satisfies a BBP-type formula of the form

[e.9]

- 1 1 aq (05} Qnp,
@ = rzbk<(kn+1)8+(kn+2)s+ +(kn+n)3>’

k=0

where 7 and aj are unknown integers, for a specified selection of the parameters b, s and
n. To apply PSLQ, first calculate the vector (3,5, 1/(0F(kn + 7)%), 1 < j < n), as well
as « itself, to very high precision, then use this (n + 1)-long vector (including o at the
end) as input to a PSLQ program. If a solution vector (a;) is found with sufficiently high
numerical fidelity, then

o0

—1 1 aq a9 (7%
C T ]; o ((zm 11 (knt2)e (kn + n)5>

(at least to the level of numeric precision used).
This compendium is not intended to be a comprehensive listing of all such formulas.
In most cases a formula is not listed here if it is merely

1. a telescoping sum.
2. a formal rewriting of another formula on the list.
3. a straightforward formal manipulation starting with another formula in the list.

4. an integer linear combination of two or more formulas already in the list.



Item 1 refers to a summation such as

1 [ 1
S =25 (z - m) ’

k=1
which, if split into two summations, has the property that the terms of the first series
cancel with offset terms of the second series, so that S reduces to a rational number (in
this example, S = b+ 1/2). Item 2 refers to the fact that a formula with base b and
length n can be rewritten as a formula with base b" and length rn. Item 4 refers to the
fact that the rational linear sum of two BBP series can, in many cases, be written as a
single BBP series. This is clear if the two individual series have the same base b. If one
has base " and the other has base b°, their sum can be written as a single BBP series
with base b'°™("*) [15]. Along this line, many of the formulas listed below possess variants
that can be obtained by adding to the listed formula a rational multiple of one of the zero
relations listed in Section 11.

The formulas are listed below using a notation introduced in [15]:

- 1 - Q;
P(s,b,n,A) = E b—k E W (3)
k=0 j=1

where s, b and n are integers, and A = (a1, aa, ---, a,) is a vector of integers. For
instance, using this notation we can write formulas 1 and 2 more compactly as follows:

T = P(1,16,8,(4,0,0,—2,—1,—-1,0,0)) (4)
1
log2 = §P(1,2,1,(1)). (5)

In most cases below, the representation shown using this notation is a translation from
the original source. Also, in some cases the formula listed here is not precisely the one
mentioned in the cited reference — an equivalent one is listed here instead — but the
original discoverer is given due credit. In cases where the formula has been found experi-
mentally (i.e., by using the PSLQ integer relation finding algorithm), and no formal proof

is available, the relation is listed here with the ~ notation instead of an equal sign.

The P notation formulas listed below have been checked using a computer program
that parses the I TEX source of this document, then computes the left-hand and right-hand
sides of these formulas to 2000 decimal digit accuracy.

Additional contributions to this compendium are welcome — please send a note to
the author at dhbailey@lbl.gov.

2 Logarithm formulas

Clearly logn can be written with a binary BBP formula (i.e. a formula with b = 2™
for some integer m) provided n factors completely using primes whose logarithms have
binary BBP formulas — one merely combines the individual series for the different primes
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into a single binary BBP formula. We have seen above that log 2 possesses a binary BBP
formula, and so does the log 3, by the following reasoning:

log3 = 2log2+log(1——> Z_k Z
= —Z4k <2k+1 2k+2>_12047(2k+2)

e e}

_ ;%(%11) = P(1,4,2,(1,0)). (6)

In a similar manner, one can show, by examining the factorization of 2" +1 and 2" —1,
where n is an integer, that numerous other primes have this property. Harley [22] further
extended this list of primes by writing

1 1 1
Re(log(li ;Z>) = (g—n)log2+§log(22”_1i2”+1),

where Re denotes the real part. He first noted that the Taylor series of the left-hand side
can be written as a binary BBP-type formula. He then applied Aurefeuille’s factorization
formula

24n72 4 1 = (22n71 4 2n 4 1)(22n71 o 2n + 1)

to the right-hand side. More recently, Jonathan Borwein has observed that both of these
sets of results can be derived by working with the single expression

o (e (12 052)).

A preliminary list of primes p such that log p has a binary BBP formula was given in
[13]. This list has now been augmented by the author to the following:

2,3, 5,7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 73, 109, 113, 127, 151,
241, 257, 337, 397, 683, 1321, 1613, 2113, 2731, 5419, 8191, 43691, 61681,
87211, 131071, 174763, 262657, 524287, 2796203, 15790321, 18837001,
22366891, 4278255361, 4562284561, 2932031007403, 4363953127297,
4432676798593. (7)

This list is certainly not complete, and it is unknown whether or not all primes have
this property, or even whether the list of such primes is finite or infinite. The actual
formulas for log p for the primes above are generally straightforward to derive and are not
shown here.

One can also obtain BBP formulas in non-binary bases for the logarithms of certain
integers and rational numbers. One example is given by the base ten formula 81 below,
which was used in [13] to compute the ten billionth decimal digit of log(9/10).
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3 Arctangent formulas

Shortly after the original BBP paper appeared in 1996, Adamchik and Wagon observed
that [11]

1
arctan2 = P(1,16,8,(8,0,4,0,~2,0,~1,0)). (8)

More recently, binary BBP formulas have been found for arctan ¢ for a large set of rational
numbers g. These experimental results, which were obtained by the author using the
PSLQ program, coincide exactly in the cases studied so far with the set of rationals given

by ¢ = [Im(T")/Re(T")| or |Re(T")/Im(T")|, where

(R 0

k=1

The arctangents of these ¢ clearly possess binary BBP formulas, because Im(logT") de-
composes into a linear sum of terms, the Taylor series of which are binary BBP formulas.
The author is indebited to Jonathan Borwein for this observation. See also [16, pg. 344].
Alternatively, one can write Formula 9 as

H (1 + —) N (1 + 12122.)1% (10)

for various m-long nonnegative integer vectors t, u, v, w and choices of signs as shown.
For example, setting t = (1,1), v = (1,1), v = (1,3), w = (1,1), with signs (1, —1,—1,1),
gives the result T' = 25/32—5i/8, which yields ¢ = 4/5. Indeed, one can obtain the formula

4 1
arctan (g) = ol L2240, (0,2'%,0,—3 - 2'7, —15-2%,0,0,5 - 21,0, 2%, 0,
—3-21.0,0,5-21% 5.2t 0,2 0,21 0,0,0,5-27,15 - 2°,128,0,
—96,0,0,0,40,0,8,—5,—6,0,0,0,0)). (11)

In this manner, it can be seen that binary BBP formulas exist for the arctangents of
the following rational numbers. Only those rationals with numerators < denominators <



50 are listed here:

1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/7, 3/7, 4/7, 6/7

1/8, 7/8, 1/9, 2/9, 7/9, 8/9, 3/10, 2/11, 3/11, 7/11, 8/11, 10/11,

1/12, 5/12, 1/13, 6/13, 7/13, 9/13, 11/13, 3/14, 5/14, 1/15, 4/15

8/15, 1/16, 11/16, 13/16, 15/16, 1/17, 6/17, 7/17, 11/17, 15/17

16/17, 1/18, 13/18, 4/19, 6/19, 7/19, 8/19, 9/19, 11/19, 17/19

1/21, 16/21, 3/22, 7/22, 9/22, 19/22, 2/23, 4/23, 6/23, 7/23

11/23, 14/23, 15/23, 7/24, 11/24, 23/24, 13/25, 19/25, 21/25,

7/26, 23/26, 5/27, 11/27, 2/29, 3/29, 15/29, 17/29, 24/29, 28,29,

17/30, 1/31, 5/31, 8/31, 12/31, 13/31, 17/31, 18/31, 22/31, 27/31,

1/32, 9/32, 31/32, 1/33, 4/33, 10/33, 14/33, 19/33, 31/33, 32/33,

7/34, 27/34, 13/35, 25/36, 5/37, 9/37, 10/37, 16/37, 29/37, 36/37,

1/38, 5/38, 13/38, 21/38, 20/39, 23/39, 37/39, 9/40, 3/41, 23/41,

97/41, 28/41, 38/41, 11/42, 19/42, 37/42, 6/43, 19/43, 23/43,

32/43, 33/43, 7/44, 23/44, 27/44, 3/46, 9/46, 17/46, 35/46, 37/46,

1/47, 13/47, 14/47, 16/47, 19/47, 27/47, 19/48, 3/49, 8/49, 13/49,

18/49, 31/49, 37/49, 43/49, 29/50, 49/50. (12)

It was recently noted in a paper by Borwein, Galway and Borwein [17], which in-

cludes a significant structure theory for BBP-type arctangent formulas, that arctan(1/6) =
arctan(1/5) —arctan(1/31), so that arctan(1/6) also has a binary BBP formula. Similarly,
arctan(b/6) = arctan(1) —arctan(1/5) +arctan(1/9) —arctan(1/255), and arctan(1/11) =
arctan(1) — arctan(5/6). By performing PSLQ over the set of arctangents of the above
list, augmented by 1/6 and 5/6, one finds that most are linearly dependent on the others.

Indeed, by eliminating redundant elements, one can reduce the list to the following set
whose arctangents appear to be linearly independent:

1/2, 1/3, 2/3, 1/4, 2/5, 4/5, 1/6, 5/6, 7/8, 3/10, 4/15, 1/16, 6/19,

32/33, 13/38. (13)
From the basis set (13), by performing PSLQ), one can find relations for all of the rationals
in the list (12), and, in addition, relations for the following additional rationals:

5/7, 1/11, 4/13, 7/16, 4/17, 9/17, 3/19, 9/20, 13/21, 15/21,

20/21, 21/22, 9/23, 10/23, 2/25, 8/26, 19/26, 8/27, 14/27, 19/27,

23/27, 3/28, 17/28, 11/29, 14/29, 26/29, 25/31, 7/32, 13/33,

19/34, 12/35, 19/35, 11/36, 31/36, 20/37, 22/37, 9/38, 31/38,

2/39, 25/39, 13/40, 1/41, 13/41, 24/41, 27/41, 31/42, 1/43, 2/43,

15/43, 36/43, 35/44, 7/45, 11/45, 41/45, 43/46, 23/47, 25/47

29/47, 29/48, 2/49, 10/49, 1/50, 41/50. (14)

7



Even after merging our list (12) by this new list (14), note that not all “small” ratio-
nals appear. For instance, it is not known whether arctan(2/7) possesses a binary BBP
formula. On the other hand, Kunle Adegoke, Jaume Oliver Lafont and Olawanle Layeni
have shown that arctan(5/36) has a binary BBP-type formula [10].

One can obtain BBP formulas in non-binary bases for the arctangents of certain ra-
tional numbers by employing appropriate variants of Formulas 9 and 10.

4 Other degree 1 binary formulas

We present here some additional degree 1 binary BBP-type formulas (in other words, in
the P notation defined in equation 3 above, s = 1, and b = 2™ for some integer m > 0).
Here ¢ = (1++/5)/2 is the golden mean.

T o= }lp(1,16,8,(8,8,4,0,—2,—2,—1,0)) (15)

m = P(1,—-4,4,(2,2,1,0)) (16)
™2 = %P(1,64712,(32,0,8,0,8,0,—4,0,—1,0,—1,0)) (17)
™3 = %P(1,64,6,(16,8,0,—2,—1,0)) (18)
™5 = %P(1,2QO,4O,(219,219,—218,0,0,217,216,0,215,O,

2147 0’ 2137 213’ O, 07 _211’ 2117 210’ O, _29’ _29’ 28’ 0’ O,
—27, =200, -2° 0, 2% 0,-2% —2°0,0,2,-2,—-1,0))  (19)

1
V2log(1+v2) = =P(1,16,8,(8,0,4,0,2,0,1,0 20
8
1 1
2tan”' ( —= | = =-P(1,16,8,(8,0,—4,0,2,0,—1,0 21
Vatant (5] = GP(L16,(5.0.-4,0.2,0,-1,0) (21)
1
tan"t ¢ = 1—6P(1, 16,8, (8,16,4,0, -2, —4,—1,0)) (22)
1
tan ' ¢? = g13(1,16,8,(8,4,4,0,—2,—1,—1,0)) (23)
1
tan_l¢5 = 1_6P(1a16787<8a327470a_2a_8a_1a0>> (24>
B 3
tan~' ¢’ = ﬁp(1,212,24,(2“,0,210,0,—29,—210,—28,0,27,0,
2670a_25707_247072372472270a_2a07_170)> (25)

Formula 15 was first found by Ferguson [21], while 16, which is the alternating sign
equivalent of 15, was found independently by Hales and by Adamchik and Wagon [11].
Technically speaking, these formulas can be obtained from the original BBP formula for 7
(formula 1) by adding 1/4 times relation 108 of Section 12, but they are included here for
historical interest, since their discovery predated the discovery of relation 108. Formula



17 appeared in [13]. Formulas 18, 20 and 21 are due to Knuth [23, pg. 628]. Formulas 19
and 22-25 were found by Kunle Adegoke [8, 9.

5 Degree 2 binary formulas
Here are some degree 2 binary formulas (i.e., s = 2, and b = 2™ for some integer m > 0).

The constant G here is Catalan’s constant, namely G =1 —1/324+1/52 = 1/7* + ... =
0.9159655941 . . .:

7 = P(2,16,8,(16,—16, -8, —16, —4, —4,2,0)) (26)
9
= g13(2,64,6,(16,—24,—8,—6,1,0)) (27)
1
log?2 = 6P(2, 16,8, (16, —40, —8, —28, —4, —10, 2, —3)) (28)
1
log?2 = 3—2P(2, 64,6, (64, —160, —56, —40, 4, —1)) (29)
1 1
G—§7rlog2 = 1—6P(2,16,8,(8,8,4,0, —2,-2,—1,0)) (30)
1
rlog2 = %P(Q, 212 24, (212, 21 —51.2% 15.2'% 2% 39.28 0,
45-28.37-26 290,328 —64,0,51 - 23,45 - 2* 16, 196, 0,
60, —37,0,0,0)) (31)
1
m™/3log2 = @P(Q, 212.24,(9-2°, —27-2% —9.2! 27.29 0,81-27,
9.26.45.289.2%0,0,9-2% —72,-216,9-2°,9-25 0,162,
—9,72,-36,0,0,0)) (32)
7T\/§10g2 = %P(272127247(2117_3'211707_211729707287210,073'27726707
—25-3.2°0,-20 2% 0,—22 2%, 0,6, —1,0)) (33)
™ 9 12 11 12 10 59 8 8 8 o6
\/3012(§> = o P(2,2%,24, (2", —2'%,0,-2,2°,0,2%,3.2°,0,2%, 2",
0,—2° —2%0,—3-2% 2% 0,—22 2% 0,2% —1,0)) (34)
1
G = ﬁP(Q, 212 24, (210,210 29 3.2 256, —2' 256,
—9.27, —5.2564,64,0,—16,64,8, —72,4, 8,4, —12,5,
4,-1,0)) (35)
G = %P(Q, 212 24, (21, -2t 21 0, 2% 20 2% 0, 28 27
260,—-2°,2°,2°0,2°, 24 22,0,2%, 2, -1,0)) (36)

Formulas 26, 27, 29 and 30 were presented in [13] (although 30 appeared in a 1909
book by Nielsen [25, pg. 105]). Formulas 28 and 32 were found experimentally by the



author, using the PSLQ program. Formula 28 was subsequently proved by Kunle Adegoke
[4]. Formulas for wlog2 and G were first derived by Broadhurst, although the specific
explicit formulas given here (31 and 35) were found experimentally by the author using
PSLQ. Formula 36 was found by Kunle Adegoke [1], based on a formula of Broadhurst.
Formulas 33 and 34 appeared in [10]. Here Cl, is a Clausen function (see section 9).
Formula 35 = Formula 36 +5/2' x Relation 120 +1/2'2x Relation 121. Formula 32 =
Formula 33 +27/2%x Relation 120 —9/2'°x Relation 121. Formula 31 = 8x (Formula 36
— Formula 30) —1/2%x Relation 120 —1/2%x Relation 121.
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6 Degree 3 binary formulas

7% log 2

mlog? 2

- 28P(3,212,24, (3-2M —21.2!1 3.213 15. 21 —3.29 3.210

3-28,0,—3-2%0 —21.27, —-192, —3-2% —96,—21-2°, —3-27,0,
24,48, —12,120, 48, —42,3,0)) (37)

1
ﬁp(& 2'224,(0,3- 2" —27.2'2.3.2'0,93-2° 0,3 2™ 27.2°,

3-29,0,75-250,3-27,27-2%3.2190,93-2% 0,192, —216,
24,0,3)) (38)

1
3—2P(3, 2'2.24,(0,9- 2", —135-29,9-2',0,99 - 2% 0,27 - 2% 135 - 29,
9-27,0,45-2,0,9-2° 135-2% 27-25,0,396,0, 72, —135,18,0,0)) (39)

1
ﬁp(s, 290120, (7- 2%, -37- 2% —63 . 2% 85.2% 3861 - 2%,

—3357-2%.0, —655 - 2°8 347 . 2°1 79 . 253 (0, 4703 - 2°2, —7 - 253, 0,
—1687 - 252, —655 - 254, 7. 21 —4067 - 219,0, —6695 - 28, —347 - 218,
0,0, —7375-2% 3861 -2, —37.2% —63.21 85.2" —7.2%
—933-2%.0,—655 - 26,347 . 22 —37. 2% 875 . 213 4703 . 210,
—7-2%.0,63-2% —-3105- 2% 7.239 —4067 - 2%7,0,85 - 239,441 - 2%,
0,0, —7375-2% 7.2% 79.2% _63.2% 85.2% —7.2%

—3357 - 231, —875 - 233 —655 - 234 347 . 230, —37.2%2 0, —167 - 232,
—7-2%.0,63- 2% —655- 230, 3861 - 226, —4067 - 22°,0, 85 - 2%,
—347-2%4, 375220, -7375- 2%, 7. 2% 37.2% 1687 - 2%2,
85.223 —7.2% _3357.219 0,-3105 .28 347 . 218 —37.2%9 0,
4703 - 2'%,3861 - 2'%,0,63 - 2'6, —655 - 2'8, 7. 215 923 . 21° 0,

85 -2 —347-2'%0,-875- 2", —7375. 2% 7.21 _37.2'2

—63 -2 —6695 - 28, —7.29 —3357- 27,0, —655 - 210, —441 - 2°,
—37-2%,0,4703 - 2%, —224, —375- 2% 63 - 2*, —655 - 25, 56, —8134,
875 -2°,85 -2 —347,0,0,0)) (40)
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1
T = ﬂp(?,, 290120, (5 - 2%, —15. 2% —225.2%8 95.2% 4115 . 2%,

—3735-2%.0, —685 - 2°8, 505 - 254, 5. 2% 0, 5485 - 2°2, —5 . 273 (),
—1775 - 2°%,—685 - 2%, 5. 21 —3945 - 2%9 0, 7365 - 2%, —505 - 2%,
0,0,—8125-2% —4115.2% —15.2% _225.2% 95.217 _5. 9%
—965 - 2%°.0, —685 - 26, 505 - 22, —15 . 244 125 . 216 5485 . 210
—5-2%.0,225-2% —2835.2% 5.2% _3945.237 0,95 - 2%

905 - 2%.0,0, —8125 - 234 5. 2% 5.9233 _9295.2% 95. 2%

—5-2% —-3735.2% —125.2%¢ 685 .23 505.2%° —15.2% 0,
—165-2% —5.2% 0,225 - 2% —685-2% —4115-2% 3945 . 2%,
0,95-2%7 —505- 2% —125 .22 0, —8125-2%2 5.2% —15.2%
1775-2%2,95.2% —5.2%1 _3735.219 0, —2835 - 2'8 505 - 2'8,
—15-2%°0,5485 - 21° 411526, 0,225 . 216 —685 - 218 5. 215,
—955-21%.0,95 - 21 —505- 22,0, —125 - 216, —8125 . 210 5. 211
—15-2% -225.2'9 7365 .2% —5.29 —3735.27,0, —685 - 2'°,
—905- 2% —15.2% 0,5485 - 2, —160, —125 - 23,225 - 2*, —685 - 29, 40,

—7890,125 - 2°,95 - 23, —505, 0,0, 0)) (41)
9
35¢(3) — 2% log2 = ZP(3,64,6,(16,—24,—8,—6,1,0)) (42)
1
log®2 = 3 2813(3,212,24,(213,—5-214,—212,17-213,—211,
5-19-2% 210 9.9212 99 _5.910 _98 96 _ o7 _5.98 96
9.2%2° 5.19-2% —2417-2° —2% —5.2% 22 9)) (43)
1
m?log2 = 3 2613(3,212,24,(5-2”,—41-2”,—5-210,49-2“,

—5-.29.67-295.2827.29 5.27 —41.27, —5.26 —5.27,
—5.25 —41-2°5.2%27.26 5.2% 67.2% —5.2% 49 .23

—5-2' —41-2'5.0)) (44)
1
C(3) = o 251_D(3,212,24,(2”,—11-210,—210,23-29,—29,212,
28 27.27 27 —11.26 —26 27 95 _11.2% 2% 27.23 23
20 —2223.21 —2' —11,1,0)) (45)
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5
T = 53 290,120, (2%, =3 -2%,11-2°7,0,23 - 2°°,3 . 7. 2%, —2%, 0,

11-25413.2% 2% 0, —253 3.2% 7.252 0,25 —3.7.2%0 2% 0,
—11-2%83.2% 218 0 —23.216 _3.218 11.2%5 o 215 216 91
0,11-2% —3.2% —23.2% 0, —2% 3.212 _11.2% 0,2% —3.7.2%,
2380,7-2%7.3.2%8 236 (,2% 13.2% 11.2% 0,-2%3.7.2%%
23-231.0,11.2%0 —3.232 2% 0, —2% 3.2%0 _11.2% 0,—-23.2%
—3.7.2% 2% 0 —11.2% —13.2% —2% 0,2% -3.2% —7.2%2 0,
—223.7.2%0 9% 0 11.218 —3.2%0 218 0 23.216 3.218 _11.2!5
0,215 216 21 o —11.21%2 3.2 23.21 o 2!' —3.212 11.2° 0, -2°,
3.7-28 -280,—7-27,—3.2% 26, 0,—2° —13.2% —11-2%,0,2°,
—3-7-22,-23.2,0,—11,3-22 —1,0)) (46)

1
mlog?2 = ﬁp(g, 290120, (7-2%, -37-2% 13 .17-2°7,0,192 - 25,

5.71-2% —7.2% 0,13-17-2%,227.2° 7.2% 0, -7.2%,
37-2°47.11-2%,0,7-2%, —5.71-2% 7.2 0,-13 .17 - 2%,
37-2°0 —7.2% 0,-19%.2% _37.2% 13.17.2%, 0, -7-2%,
—5.210 _7.2% 0,13.17-2% —37.2% —19%.2% 0, -7 2%,
37-2% -13-17-2%.0,7-2%, —5.71.2% 7.2% 0,7-11- 2%,
37-2% —7.23% 0,7.2% 227.2% 13.17-2%,0,-7-2%,
5-71-2%%192.2% 0,13-17-2% -37.2% 7.2% 0, —7.2%,

37-2% —13.17.2%7,0,-19%.2% —5.71.2% 7.2% 0, —13.17- 2%,
—227.2% _7.2% 0,7.2% —37.2% —7.11.2% 0,-7- 2%,
5.71-2%0 —7.2%0,13-17-2" —37.220 7.2 0,192 . 26,

37-218 —13.17-.215,0,7-215,5.216 7.2 0, —13.17- 212,

37-2M 19%. 21 0,72 —37.22 13.17-2°,0,-7-2% 57128,
—7-28,0,—7-11-27,-37-28,7-20,0,—7-25,—227.2% —13-17- 23,
0,7-2% —5-71-2% -19%.2,0,—17-13,37-2% —7,0)) (47)
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72 log 2

1
7.2%
3 . 2547 0, _254’ 53 . 253’ _253’ 0,-3-7- 252, 11 - 2537 251’ 0, _250’ 34, 249’
—83.2% 0,21 —53.217 _3.41.2% 0,—83.2% 11.2% —2% 0,2,
—11-2%,83.212,0,3 .41 .24 5. 24 9%  83.239 31.239 239 2%
11-2%9,3.7.2%7.0,2%6 —53.23% 2% 0, —-83.233 11.2% —2% 0,-3.41.23,
—11-23%,83.2% 0,-2% 0, —-2%,0,83- 2%, —11-2% —3.41.2% 0, 2%,
11-2%7,-83.221 0,224, —53.2%3 2 0,3.7.2%% 11.2%, 2% 0,2% 3'.219
83.218 0, —218 53.217 3.41.216 0,83 .25 —11.2!7 25 0, -2 11.25,
—83-2120,-3.41.2M" —53.2M 21l o —83.29 —3%.29 29 0,28 —11.2°,
—3.7-27,0,—255%.2% —250,83-23 —11-25,23.0,3-41-2,11- 2%,
—83,0,1,0)) (48)

P(3,2% 120, (2%%,0, —83 - 2°7, 11 -2%%,3 - 41 - 2%6 0,2% —11 - 2°7,

3
5. 256
—19-2%0 1031 -2%,0,-7-2% 5%.13.2% —7.2% 0,-3%.11. 2%,

—19.2% 7.2% 0, —7.2% —3%.113.2% —1031-2",0,7- 2%,
—53.13-2%7,-32.179.2% 0,-1031-2%,19 . 2% —7.2% 0,7. 2%,
—19-2%1031-2%,0,3%-179- 2" 5% .13. 28 —7.24 0,1031 - 2%,
32.113-2%.7.2% 0, —7-2%19.2" 3%.11.2%,0,7-2% —5%.13.2%,
7-2%.0,—1031-2%,19.2% —7.2% 0,-3%.179 .23 —19.2% 1031 .2%,
0,—7-2%0,—7-2%,0,1031 - 2%", —19 - 232, —32 . 179 - 2260, —7 - 226,
19230 —1031-2%1,0,7-2%, —5%.13-2%,7.2%,0,3%.11-2%,19 . 2%,
—7-221.0,7-2%.3%.113-2%,1031- 2" 0, -7 -2'8,5%. 13 . 2!7 32 . 179 . 26,
0,1031-2% —19.220 7.21 0, —7.2 19.2%® 1031 -2'%0,-3%.179 - 2!,
—5%.13-2"% 7.2!10,-1031-2% —3%.113-2° —7.2°.0,7- 2%, —19 - 2'2,
-3%.11-27,0,—7-2%5%.13.25 —7-25,0,1031 - 23, —19 - 28, 7. 23,0,
32.179-2,19-2% -1031,0,7,0)) (49)

P(3,2% 120, (7-2%,0,—-1031 - 2°7,19 - 262,32 . 179 - 256 0,7 . 2%
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3
log®2 = %P(ZS, 290120, (2°°,0, —11-19 - 257 5.202 373 . 2% 0, 2% 5.2

11-19-2% 0, —2% 367 - 2%, —2% 0, -83 .25 —5.2% 2% (0 —250
—5-43-2% —11.19.2% 0,2% —367-2', -373.2% 0,-11-19-2% 5. 2%
—2% 0,21 —5.2% 11.19-2%2 0,373 - 2% 367 - 2%, -2 0,11 -19 - 2%,
5.43.2% 239 (0, —238 5.212 83.237 0,236 _367.2% 2% 0,—11-19 - 2%,
5.2% 9233 0,-373.2% —5.2% 11.19.2% 0,-2% 2% _2% 0,
11-19-2%7, —5.2% _373.2% 0,—2%6 5.2%0 _11.19.2% 0,2*, —367 - 2%,
223.0,83-222 5.2% 221 0220 5.43.219 11.19-2'8 0, —2'% 367 - 2'7,
373-21,0,11-19-2%, —5.2% 215 o 21 5.2 _11.19.2!2 0,373 . 2",
—367-2M 241 0,—11-19-2% —5.43.2% —2° 0,28 —5.2'2 —83.27 0, —2°,
367-2°,—2°,0,11-19-2% —5.2% 2% 0,373-2,5-25 —19-11,0,1,2%))  (50)

%log?’ 2 — %7# log 2 + %g(?,) = P(3,16,8,(8,0,—4,—4,-2,0,1,1)) (51)

The existence of BBP formulas for these constants was originally established by Broad-
hurst [19]. However, except for 37, which appeared in [15], the specific explicit formulas
listed here were produced by the author’s PSLQ program. Formula 39 is proved by sub-
tracting 5/192x Relation 123 from Formula 44. Formula 40=Formula 47+37/75/25" x Re-
lation 124+133/75/2%6 x Relation 125. Formula 41=Formula 46+1/5/25° x Relation 124+
9/5/254x Relation 125. The results for mlog?2 and 7 were produced by a special par-
allel version of this program, running on the IBM SP parallel computer system in the
NERSC supercomputer facility at the Lawrence Berkeley National Laboratory. Formulas
42 through 51 were recently proven by Kunle Adegoke [6, 2].
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7 Degree 4 binary formulas

4

log* 2

721og? 2

1
rc413(4, 21224, (27 -2, 513 - 2! 135. 21 —27. 21 —27.2%

—621-21927.28 —729.219 _135.2!1 _513.27 —27.2°
—189 .29 —27.25 —513.2% —135-2% —729.2° 216, —621 - 24,
—108, —216, 135 - 2°, —1026, 27,0)) (52)

1
P(4,2'2 24 2212 9617 - 212 8455 - 212 2533 . 912
505 55 (4,22,24, (73 ,—2617 , 8455 ,—2533 ,

—73-219 25781 .29 73 .2 —6891 - 21, —8455 - 27 —2617 - 28,
—73-27,-23551-2% —73 .26 —2617- 2%, —8455- 2%, —6891 - 27,
73.2% —25781-2% —73-2% —2533 - 2% 8455 - 2%, 10468,

146, —615)) (53)

1
i 25P(4, 212 24 (121 - 2", —3775- 2" 10375 - 21, —1597 - 21,

—121-2°%, —3421- 2" 121 - 28, —7695 - 21°, —10375 - 28, —3775 - 27,
—121-25, -3539 - 28, —121-2°, —3775 - 2°, —10375 - 2°, —7695 - 2,

121 - 2%, 3421 - 2°, —484, —1597 - 2%, 41500, —7550, 121, 0))

675
771251
—5.259 95 961 _11.17.2% —5.257 2% _5.41.2%,

_253 _5 . 255 _31 . 252 _257 251 _5 . 253 _250 109 . 249
11-17-2%18 —5. 25 218 53.947 197.216 _5.219 11.17.2%,
—o19 915 _5. 017 oM 919 _77.17.212 _5.215 _127.2%
—5.41.24 o4t _5.988 _11.17.2%9 -3%.7.239 2% 5.4
_238 _241 31 . 237 _5 . 239 236 53 . 235 235 _5 . 237
11-17-23,-237 9233 _5.93% 127.231 237 _11.17.2%,

_5 . 233 _230 _5 . 233 _229 _5 . 231 11 - 17 . 227 _233
127226 —5.9229 926 _929 11.17.2% _5.9227 224
53 . 223 223 _5 . 225 31 . 222 _225 _221 _5 . 223 220
—33.7.2Y9 —11.17-218 —5.220 918 _5.47.2'7 _127.216
—5.219 _11.17.2%15, 2% 215 _5.91T _ol4 _ol7 11.17.212
—5.215 127. 21 53 . oM oll _5.913 11.17.2% 109 .27, —27,
—5.211 98 o138 _31.97 _5.29 96 _5.41.25 —25 —5.27,
—11-17-2%, 2923 —5.25 —127-2,-2° 17-11,-5-2°1,0))

P(4,2% 120, (2%, -5 - 200 11 .17 - 257 26! 127 . 2%

Y

16
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log 2

1
—— P(4,2% 120,(823-2%. —5.3137-2% 11.40829 257 —18047 - 26°
7 . 71 . 254 ( b ) ) ( ) ) ) b

—277-1723 - 2% —5.3137-2%8,823 .25 1181 - 2% —11-40829 - 24,
—5-3137-2% —-823.2% —595141 - 253 —823 . 2°3 —5.3137 - 2°,

29 - 457 - 2°% 1181 - 2°°,823 - 251 —5.3137 - 2°%, —823 . 2%,

331249 - 2%9 11 - 40829 - 248, —5. 3137 - 2%, 823 - 218, 19% . 1301 - 2%,
2771723 - 2% —5.3137-2% 11.40829 - 2%°, —18047 - 218, —823 . 2%,
—5-3137-2% 823 - 2% 1181 -2 —11.40829 -2 —5.3137- 2",
—277-1723 - 241, 595141 - 241 —823 . 21 —5.3137-2%2 —11- 40829 - 2%,
—3-.7%.13.239.2%,823.2% —5.3137.21 —823.2% 18047 - 2,
—29.457-2%7 —5.3137-2%,823. 2% 192.1301 - 23°,823 - 23,
—5-3137-2% 1140829 - 233, —18047 - 236, —823 - 233, —5. 3137 - 234,
2771723 - 231 1181 - 2% —11-40829 - 2% —5.3137 - 2% —823 .23,
—29879 - 231, —823.2%° —5.3137-2%° —11-40829 - 227, 1181 - 23!,
2771723 - 2% —5.3137-2%% —823. 2% 18047 - 2% 11 - 40829 - 2%,
—5-3137-2%,823-2* 197 . 1301 - 2%°,823 - 2%, —5. 3137 - 2%,

—29 . 457 -2%2 18047 - 2*4, —823 - 22' —5. 3137 - 222,823 - 2%,
—3.7%.13-239-2'9 —11-40829 - 2'® —5.3137.2%°, —823 .28,
—595141 - 217, —277 - 1723 - 21, —5. 3137 - 218, —11 - 40829 - 215,

1181 -219 823 . 215 —5.3137.21¢ 823 . 21 18047 - 26,

11-40829 - 22 —5.3137-2M 277 - 1723 - 2'1, 192 . 1301 - 2!,

823 -2 —5.3137.2' 11 -40829 - 2%,331249 - 2°, —823 - 2,
—5-3137-2%,823 2% 1181 -2",29 . 45727, —5 . 3137 - 28,
—823.25 595141 - 2%, —823 - 2°, —5- 3137 - 2%, —11 - 40829 - 22,
1181-27,823.23 —5.3137-2%, —277 - 1723 - 2, —18047 - 2%,

40829 - 11, -5 - 3137 -2%,823, =3 -7-71-2)) (56)
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72 1log? 2

20 Cl, (

™

2

)+

1
— P(4,2%.120,(13%-19-2% —37.179-2% 5.13 -1 . 957
o (4,2%,120, (13% - 19 ,—37-179 ,5-13-19973 ,

—5-1663 - 22, —17-179-379 - 256 —37.179- 2% 13%.19.25¢ 4931 . 2%
—5-13-19973 - 2%, —37-179 - 2% —13? .19 - 2%, —43 - 36529 - 2°3, —13% .19 - 2%,
—37-179- 2%, —5.15137 - 2°2, —4931 - 256,132 . 19 - 2°1, —37.179 - 2%,
—132.19-2%0.5.176159 - 2% 5 .13 - 19973 - 2% —37.179 .25 132 .19 - 2%,
5°.367-2%7,17-179-379 - 2% —37.179-2°' 5.13-19973 - 2% —5.1663 - 2°°,
—132.19-2%, —37-179-2% 132 .19 2% —4931-2% —5.13.19973 - 2*2,
—37-179- 2%, —17-179 - 379 - 24, —43 . 36529 - 24!, —132 .19 .21 —37.179. 2%,
—5-13-19973-2% —-3°.7.13-59-2% 13%.19.2% —37.179.2% —13%.19 . 2%,
—5-1663 -2, 5. 15137 - 237, —37-179 - 2% 13%.19 - 236 55 . 367 - 2%,
132.19-2% —37-179-2% 5.13-19973 - 233, —5. 1663 - 2%, —13% - 19 - 2%3,
—37-179-2% 17-179-379 - 231, —4931 - 2%¢ —5.13.19973 - 2% —37.179 - 2%
—132.19-2%, -37.179.2% —13%.19.2%° —37.179-2% —5.13-19973 - 2%,
—4931-2%.17-179-379 - 2% —37.179 - 23 —13%.19.2% —5.1663 - 2%,
5-13-19973 - 2%, —37.179-2%° 132.19.2* 55.367-2% 13%.19 . 2%,
—37-179- 2% 5.15137 - 2%, —5- 1663 - 226, —132 - 19 - 2!, —37.179 - 2%,
13%2.19-2%° —35.7.13-59-2'9 —5.13.19973 - 28 —37.179 . 2%,

—132.19- 2% —43.36529 - 27, —17-179-379 - 216, —37.179- 2% —5.13-19973 -
—4931-2%.132.19-2%5 -37.179-2Y —13%.19- 2" —5.1663 - 2'%,
5-13-19973 -2 —37-179-2'7 17 - 179 - 379 - 21 5°.367 - 2" 13%.19 - 2!,
—37-179-2%.5.13-19973-2% 5. 176159 - 2%, —13% .19 . 2%, —37 - 179 - 23,
13%.19-2% —4931 -2 —5.15137-27, —-37-179 - 21 —13%.19 - 26,

—43 36529 -2°, —13%.19-25 —37-179-2% —5-13-19973 - 23, —4931 - 28,
13%.19-23, —37-179- 27, —17-179-379 - 2, =5 - 1663 - 25,13 - 19973 - 5,
—37-179-2°,19 - 13%,0))

3rlog’2 277 log?2 9 . L
32 128 910 (4,2°%,24, (27, ,—7-27,0, ,
_5 ’ 287 _287 07 _7 : 267 _287 267 07 _257 267 7 . 237 07

2375'227227()’ 77227_170)) (58)
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7T> 29mlog®2 477 log 2

12Cl (-
Cly 2 192 256

1 60 60 60
= 5 P(4.2%,120, (2, 23 2%,

—239.257 0,—3-211-2%, —5.67-2% —257 0, —239 . 2%

_32.72, 253’ 255’ 0, _2547 _93. 254, _3.72. 250’ 0,

252 5.67.2%9 21 0,239. 2% —23.2%0 2

3-211-2% 23.218 _239.2% ¢, —216 _32.5.9%

—215.0,-239 212 23 .24 3.211.2% 0,212 —23.2%2 239 . 2%,

0,2% 5.67-2% 2% 0,-3.7%.2% —23.2% 237 ( 236

—32.7%.233 -939.23 0, -2% —5.67-2%% —3.211-2%,0,

—239.230 23.232 231 0, —230 _23.2% 939.227 0, 3.211.2%,

5.67-2%6 227 0,239 - 2% 32.72.9% 2% ( 2% 23.2%

3-72.2%00,—2%2 —5.67-2%, 2% 0,-239.2!8 23.220 219

—3-211-2% —23.2!8 239.215 0 216 32.5.213 215 ( 239.2!2

—23.2" —3.211-2% 0,2'% 23 .2'% —239.2% 0, -2,

—5-67-2% —-220,3-72.25,23.28 27 0,—26 3%.7%.23

239-2%0,2% 5-67-2% 211-3,0,239, 23 - 22, —2,0)) (59)

The existence of BBP-type formulas for these constants was originally established by

Broadhurst [19], although the explicit formulas given here were found by the author’s

PSLQ program. Formulas 52 to 54 were subsequently proved by Kunle Adegoke [2] who
also found formulas 55 to 59. Here Cl, is a Clausen function (see section 9).
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8 Degree 5 binary formulas

1
¢(5) = mP(E), 250120, (279 - 279, —7263 - 2°° 293715 - 2°7,

—13977 - 2% —1153683 - 2°¢,28377 - 20 279 . 2°6 83871 - 259,
—203715 - 2°4, —7263 - 26, —279 . 254 889173 - 253, —279 . 2%3,
—7263 - 2°*,429705 - 2°2 83871 - 2°° 279 - 2% 28377 - 2°4,
—279-2%9,1041309 - 29, 293715 - 248 —7263 - 2°° 279 . 28
1153125 - 247, 1153683 - 216, —7263 - 2%8 293715 - 2%° —13977 - 218,
—279 - 2% 28377 - 28 279 . 2 83871 - 217, 293715 - 212,

—7263 - 2% —1153683 - 24, —889173 - 24, —279 . 241 7963 . 242,
—203715 - 239188811 - 29,279 . 239 28377 . 212 279 . 238
—13977 - 2%, —429705 - 237, —7263 - 2% 279 . 2% 1153125 - 2%,
279 - 23° —7263 - 26293715 - 233, 13977 - 236, —279 . 233

28377 - 236 1153683 - 231, 83871 - 235, —293715 - 230, —7263 - 232,
—279 - 2% 16497 - 233, —279 . 2% 7263 - 230, —293715 - 2%7,
83871 - 231, 1153683 - 2%6, 28377 - 230, —279 . 2%6 13977 . 2%,
293715 - 224, 7263 - 225,279 - 22 1153125 - 223,279 . 223,

—7263 - 2%, —429705 - 222, —13977 - 22, —279 - 22! 28377 - 2%,
279 - 2%0 188811 - 219, —293715 - 218 —7263 - 220, —279 . 28,
—889173 - 27, —1153683 - 2'¢, —7263 - 2!, —293715 - 2 83871 - 2!,
279 - 2% 28377 . 218 —279. 21 13977 . 26 293715 - 212,

—7263 - 21 1153683 - 2111153125 - 211 279 . 211 7963 . 212,
293715 - 2°,1041309 - 27, —279 - 2°,28377 - 212,279 - 28,

83871 - 21, 429705 - 27, —7263 - 28, —279 - 26 889173 - 25,
—279- 2%, —7263 - 2°, 293715 - 23 83871 - 27,279 - 23,

28377 - 2%, —2307366, —13977 - 2*, 293715, —29052, 279, 0))
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1
5 _ 60 59 62 57
log2 = oo P(5,2,120, (2783 277, 32699 - 2%, 7171925 - 27,

—187547 - 2% —41252441 - 2569391097 - 257, 2783 - 25

52183 - 26° 7171925 - 254 —32699 - 258, —2783 . 274,

—20483621 - 2°3, —2783 - 253 32699 - 2°¢ 17037475 - 22,

52183 - 261 2783 . 25! 9391097 - 251, —2783 - 2%,

38246123 - 2%9 7171925 - 2*% —32699 - 2°% 2783 - 28

41307505 - 247, 41252441 - 26, —32699 - 2°° 7171925 - 24,
—187547 - 29, —2783 - 2%5 9391097 - 2%°, 2783 - 244,

52183 - 253, —7171925 - 2*2 —32699 - 21¢ —41252441 - 24,
—20483621 - 241, —2783 - 241, —32699 - 24 —7171925 - 239,
12188517 - 2392783 - 239 9391097 - 2%, —2783 - 238,

— 187547 - 2" 17037475 - 237, —32699 - 210 2783 . 2%
41307505 - 235, 2783 - 235, —32699 - 2% 7171925 - 233,

—187547 - 237, —2783 - 2339391097 - 233, 41252441 - 231,

52183 - 24 —7171925 - 230, —32699 - 234 —2783 . 230,

5881627 - 230, —2783 - 29 —32699 - 232, —7171925 - 2%,

52183 - 237, 41252441 - 229391097 - 227, —2783 - 2%,

—187547 - 2%° 7171925 - 24, —32699 - 2% 2783 . 2,

41307505 - 223, 2783 - 223 —32699 - 226, —17037475 - 22,
—187547 - 2%, —2783 - 22! 9391097 - 22!, 2783 - 22,

12188517 - 219, —7171925 - 218 —32699 - 222, —2783 - 218,
—20483621 - 217, —41252441 - 2'6, —32699 - 220, 7171925 - 215,
52183 - 2% 2783 - 2%,9391097 - 2%, —2783 - 2!, 187547 - 217,
7171925 - 22, —32699 - 2'6 41252441 - 21 41307505 - 21,2783 - 211
—32699 - 21 7171925 - 2938246123 - 27, —2783 - 299391097 - 2°,
2783 - 28,52183 - 217 17037475 - 27, —32699 - 210, —2783 . 2,
—29483621 - 25, —2783 - 25, —32699 - 28, —7171925 - 23, 52183 - 23,
2783 - 23,9391097 - 2%, —82504882, —187547 - 2°, 7171925,
—32699 - 2%, 2783,30315))
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1
210g%2 = ——P(5,2%0.120, (21345 - 2°?. —464511 - 261 4 . 257
7T Og 2021 . 253 ( ) ) ) ( b ) 7870835 )

—1312971 - 26, —236170815 - 2°6, 1579179 - 2°2, 21345 - 25¢

286131 - 25°, —47870835 - 24, —464511 - 2°7, —21345 - 2°4,
—173704605 - 2°3, —21345 - 2°3, —464511 - 2°°, 94128645 - 2°2,
286131 - 26121345 - 2°1 1579179 - 26, —21345 - 25,

215120589 - 249 47870835 - 248, —464511 - 251, 21345 - 28,
236128125 - 247, 236170815 - 216, —464511 - 249, 47870835 - 24,
—1312971 - 249, —21345 - 295 1579179 - 2°9, 21345 - 24,

286131 - 273, —47870835 - 2*2, —464511 - 2*°, —236170815 - 2*!,
—173704605 - 241, —21345 - 241, —464511 - 23, —47870835 - 239,
56870019 - 23921345 - 239 1579179 - 24, —21345 - 238,

—1312971 - 241, —94128645 - 27, —464511 - 2% 21345 - 23¢
236128125 - 2%, 21345 - 23°, —464511 - 237, 47870835 - 233,
—1312971 - 237, —21345 - 233 1579179 - 238, 236170815 - 23!,

286131 - 2% —47870835 - 2%°, —464511 - 233, —21345 - 2%,

1950735 - 234 —21345 - 2%, —464511 - 231, —47870835 - 277,

286131 - 2%7, 236170815 - 22°, 1579179 - 232, —21345 - 2%,

—1312971 - 22% 47870835 - 22, —464511 - 227 21345 - 24,
236128125 - 223, 21345 - 223, —464511 - 225, —94128645 - 222,
—1312971 - 22°, —21345 - 221 1579179 - 226, 21345 - 22,

56870019 - 219 —47870835 - 2'%, —464511 - 22, —21345 - 218,
—173704605 - 217, —236170815 - 216, —464511 - 21°, —47870835 - 215,
286131 - 22°,21345 - 25 1579179 - 220, —21345 - 21 —1312971 - 2'7,
47870835 - 212 —464511 - 2%, 236170815 - 2!, 236128125 - 21,
21345 - 211 —464511 - 213, 47870835 - 29, 215120589 - 22, —21345 - 2,
1579179 - 2 21345 - 28 286131 - 217, 94128645 - 27, —464511 - 27,
—21345 - 25, —173704605 - 2°, —21345 - 2°, —464511 - 27,
—47870835 - 23286131 - 2321345 - 23, 1579179 - 28, —472341630,
—1312971 - 2°, 47870835, —464511 - 2°,21345,0)) (62)
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1
Nog2 = ——P(5.2% 120, (5157 - 2°7. —89127 - 261 7805295 - 2°7
7T Og 2021 . 250 ( b ) ) ( ) M 95 M

—195183 - 2%, —32325939 - 25¢ 1621107 - 259, 5157 - 25,

37287 - 2% —7805295 - 2%, —89127 - 2°7, —5157 - 254,

—24620409 - 2°3, —5157 - 253, —89127 - 2°°, 12255165 - 292,

37287 - 2% 5157 - 251 1621107 - 253, —5157 - 2%,

29192697 - 2*9, 7805295 - 2*8, —89127 - 2°! 5157 - 248,

32315625 - 247, 32325939 - 246, —89127 - 249 7805295 - 24,
—195183 - 249, —5157 - 2%, 1621107 - 27, 5157 - 24,

37287 - 23 —7805295 - 22, —89127 - 2% —32325939 - 24!,
—24620409 - 241, —5157 - 241, —89127 - 213, —7805295 - 237,
5866263 - 23° 5157 - 2%, 1621107 - 2", —5157 - 238,

—195183 - 24, —12255165 - 237, —89127 - 239 5157 - 2%,

32315625 - 235, 5157 - 2%, —89127 - 257, 7805295 - 233,

—195183 - 237, —5157 - 2331621107 - 235, 32325939 - 23!,

37287 - 2* | —7805295 - 2%, —89127 - 2% 5157 - 230,

480951 - 233, —5157 - 229, —89127 - 23!, —7805295 - 2%7,

37287 - 23732325939 - 2261621107 - 2%, —5157 - 2%,

—195183 - 2%, 7805295 - 224, —89127 - 227 5157 - 2%,

32315625 - 2%, 5157 - 223, —89127 - 2%, —12255165 - 222,

—195183 - 225, —5157 - 2%! 1621107 - 2%, 5157 - 2%,

5866263 - 219, —7805295 - 2'8, —89127 - 21 —5157 . 218,
—24620409 - 217, —32325939 - 216, —89127 - 219 —7805295 - 215,
37287 - 22° 5157 - 21°,1621107 - 2'7, —5157 - 2 —195183 - 27,
7805295 - 212, —89127 - 2%, 32325939 - 21 32315625 - 21 5157 - 211
—89127 - 213, 7805295 - 2°,29192697 - 27, —5157 - 29, 1621107 - 2,
5157 - 28 37287 - 21712255165 - 27, —89127 - 27, —5157 - 25,
—24620409 - 25, —5157 - 25, —89127 - 27, — 7805295 - 23, 37287 - 23,
5157 - 2%,1621107 - 2°, —64651878, —195183 - 2°, 7805295,

—89127 - 2° 5157,0)) (63)

As before, the existence of BBP-type formulas for these constants was originally es-
tablished by Broadhurst [19], although the explicit formulas given here were found by the
author’s PSLQ) program. Proofs for these formulas were subsequently found by Kunle
Adegoke [7].
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9 Ternary (base-3) formulas

No ternary BBP formulas (i.e. formulas with b = 3™ for some integer m > 0) were
presented in [13], but several have subsequently been discovered. Here are some that are

now known:

log 2

V3tan™! <§)

/3
log 3
log 3
log 5
log 7

log 11

log 13

log?3

m/3log 3

§P<1, 9.2, (1,0)) (64)
%P(1,27,3,(3,—1,0)) (65)

1
§P(17 367 127 (817 _547 07 _97 07 _127 _37 _27 07 _1’ 07 O)) (66>

1
1

5P, 35,6, (729,81,81,9,9,1)) (68)
4

2_7P(1734747 (973,170)) (69>
1

5P, 38,6, (405,81,72,9,5,0)) (70)
s b 319,10, (85293, 10935, 9477, 1215, 648, 135, 117,
15,13,0)) (71)
1

P 36,6, (567,81,36,9,7,0)) (72)

2
ﬁp(z 39,12, (243, —405,0, —81, —27, =72, -9, -9, 0,

—5,1,0)) (73)

%P(Q, 36,12, (4374, —13122, 0, —2106, —486, —1944,

—162, —234,0, —162, 18, —8)) (74)
%P(Q, 36,12, (243, —405, —486, —135, 27,0, —9, 15, 18,
5,—1,0)) (75)
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2
13¢(3) — m*log3 +log®3 = 513(3,9,2,(9,1)) (76)

1 /297  wlog®3 1
— — = P(3,35.12,(3% —5.3% —2.3°
\/3(1296 48 ) 2. 36 (3,37,12, (3", ’ ’

—5-3%3%0,-3%5.3%2.3%5.3,-3,0))

13 log®3  572log3 1 6 6 o5 T 5
— — = —_P 12, —3* —3* —2.
C(3)+ 8 24 35 (33 (37370? 37 37 37
_3 7_32707373a2>) (77)
1277%  721og?3  5log3 1
o :—P4612 7T _k.al _1.4_5
5184 32 102 36(3 (3%, -5-3,0,-19.3, =3,
—2.35 3% —-19.3%0,-5-3% 3%,
—10)) (78)
T 29731log3  wlog®3 1
—_(11c ( )— — ZP(4,-27,6,(9,—15, —18,—5,1,0)) (79
1573 1
——1 ?log® 7l
14190 — g log’ 3 + gy log’3 — g log3
1
= §P(5,36, 12,(37,—=5-37,0,—-19 - 3% —3° —2.3° —3%
—19-3%0,-5- 3% 3% —10)) (80)

In Formula 79 above, Cl denotes the Clausen function: Cl,(t) =), -, cos(kt)/k™ if n
is odd, otherwise Cl,(t) = >, -, sin(kt)/k™. -

Formulas 64 and 65 appeared in [15]. Alexander Povolotsky discovered the formula
log3 =1/441/4>,501/9"(27/(2k+1)+4/(2k+2)+1/(2k+3)). Subsequently Jaume
Oliver i Lafont simplified this to log3 = >,.,1/9"™(9/(2k+1) +1/(2k+2)), which after
minor modification yields Formula 67 [26]. Formulas 69 through 72 are due to Oliver i
Lafont. Formulas 66 and 73 through 75 are due to Broadhurst [18]. Formulas 76 through
80 are due to Kunle Adegoke [3]. Formula 79 was first found by Broadhurst [19], using
PSLQ.
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10 Other specific bases

Here are several interesting results in other bases. Here ¢ = (1 + v/5)/2 is the golden
mean.

9 —1
log|— ) = —P(1,10,1,(1 1
3 2
log|5) = gP(1,25,2,(1,0)) (82)
Valogé = P(1,5,2,(1,0)) (83)
V5
25 781 (57 — 55
el I = P(1,5°,5,(0,5,1,0,0 34
2 % | 256 (57+5\/5> ( ( ) (84)
1 /4233 — 32 1/4 981
Lt (3233 -329V5 JFtan-t [ 5930428 V5
1
- 2.513/4P<1’55’57(1257—25,5,—1,0)) (85)
1111111111 1
log (== | = —P(1,10',10, (10% 107, 10°, 10°, 10*, 10°
Og<387420489) 108(,0,0,(0,0,0,0,0,07
10%,10%,1,0)) (36)

Formula 81 appeared in [13] (although it is an elementary observation). Formulas 82
and 83 are due to Jaume Oliver i Lafont. Formulas 84 through 86 appeared in [15].

11 General bases

v +b+1
b*log (m) = 3P(1,0%3,(b,1,0)) (87)
b—2 bb_l b b—2 1b—3 2
o (o) = POSL W b)) (88)
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1
Vbarctan(—=) = 6P(1,b2,4,(b,o,—1,0))

b2\/§ arctan (i

3
= —P(1,-v%.3, (b1
2b—]_ 2 ( ) 737(7 70>)

= gP(l,b3,3, (b, —1,0))

b? t
\/garc an <2b

.
[u—

1
= EP(1 1665, 8, (8b°,8b°, 4b*, 0, —2b*, —2b,

—1,0))

b” arctan <—

[\

S
|

—

1
= —P(1,16b°%,8, (805, —8b°, 4b*,0, —20%, 20,

b" arct
arctan ( 16

—1,0))

= 2P(1,64,8, (b 0,6%0,—b,0,—1,0))

=y

b3vby/2 arctan (4171\/5

\/_

1 1 1
95°/3 arctan <—— = —P(1,-2715.6, (96*, —9b°, 6b%, —3b, 1,0

7 S F ( )

v>V/b arctan = P(1,-b,6,(b%,0,2b,0,1,0)

1 2
= SPLY.2 (b 1)

1 2
= —5PLY.2.(b1)

= 2P(1,b,2,(1,0))

)
)
95°/3 arctan (ig%l_ ) = %P(l,—Q?bG,G,(9b4,963,6b2,36,1,0))
|
)
o
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2 1 1
2_
og (= Hl) - —b%f% 03,0 b, -2) (102
2 2—2 1 1
10g< ’ b+ ) B _@P( 7_4b474> (2b3a07_b7_1)) (103)
26 +2b+ 1 1
log( b + b+ ) = o P(L =404, (26%,0,-b, 1)) (104)
bV b+\/_\/_+1 = 2P(1,—1%,4,(b,0,—1,0)) (105)
V2 b—v2vb+1
2
—3b, +2)) (106)
Vb [0+ V3Vh+1
o — 2P(1,=1",6, (+%,0,0,0,—1,0 107
V3 e (b—\/§\/1_7+1 ( ( ) "

Formulas 87 and 88 appeared in [15]. Formulas 89 through 107 are due to Kunle
Adegoke [5]. Formula 100 was first obtained by Jaume Oliver Lafont [29].

12 Zero relations

Below are some of the known BBP zero relations, or in other words BBP-type formulas
that evaluate to zero. These have been discovered using the author’s PSLQ program,
and most are new with this compilation. For brevity, not all of the zero relations that
have been found are listed here — some of the larger ones are omitted — although the
author has a complete set. Further, zero relations that are merely a rewriting of another
on the list, such as by expanding a relation with base b and length n to one with base
b" and length rn, are not included in these listings. For convenience, however, the total
number of linearly independent zero relations for various choices of s, b and n, including
rewritings and unlisted relations, are tabulated in Table 1.

Knowledge of these zero relations is essential for finding formulas such as those above
using integer relation programs (such as PSLQ). This is because unless these zero relations
are excluded from the search for a conjectured BBP-type formula, the search may only
recover a zero relation. A zero relation may be excluded from a integer relation search by
setting the input vector element whose position corresponds to the zero relation’s smallest
nonzero element to some value that is not linearly related to the other entries of the input
vector.

For example, note in Table 1 below that there are five zero relations with s = 1, b = 22
and n = 24. These relations are given below as formulas 110 through 115. If one is
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searching for a conjectured formula with these parameters using PSLQ, then these five
zero relations must be excluded. This can be done by setting entries 19 through 23 of the
PSLQ input vector to e, €2, €®, e* and €°, respectively, where e is the base of natural
logarithms. Positions 19 through 23 are specified here because in relations 110 through 115
below, the smallest nonzero entries appear in positions 23, 22, 21, 20 and 19, respectively.
Powers of e are specified here because, as far as anyone can tell (although this has not
been rigorously proven), e is not a polylogarithmic constant in the sense of this paper,
and thus it and its powers are not expected to satisfy BBP-type linear relations (this
assumption is confirmed by extensive e xperience using the author’s PSLQ programs). In
any event, it is clear that many other sets of transcendental constants could be used here.

Note that by simply adding a rational multiple of one of these zero relations to one the
formulas above (with matching arguments s, b and n), one can produce a valid variant of
that formula. Clearly infinitely many variants can be produced in this manner.

Aside from the discussion in [20], these zero relations are somewhat mysterious —
it is not understood why zero relations occur for certain s,b and n, but not others. It
should also be noted that in most but not all cases where a zero relation has been found,
nontrivial BBP-type formulas have been found with the same parameters. This suggests
that significant BBP-type results may remain to be discovered. In any event, it is hoped
that this compilation will spur some additional insight into these questions.

Note that all of these formulas except for the last two are binary formulas (i.e. b = 2™
for some integer m > 0).
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No. zero No. zero

s b| n | relations | s b n | relations
1] 16| 8 1 128 ] 48 1
1] 64| 6 1 12| 96 5
1| 28116 1 1]2%2] 104 1
1]22 112 1 12| 54 1
1(22 |24 5 1]2% | 112 1
1 (216132 1 1121 60 1
1]2¥8 118 1 1129|120 7
1]2% 40 3 21212 24 2
12|24 1 2122 | 40 1
1|2% ] 48 5 21224 | 48 2
11]2%% |56 1 21236 | 72 2
1123130 1 2124 | 80 1
1|23% 160 1 21218 | 96 2
112% 64 1 2126 | 120 4
11]2% |36 1 3122 | 24 1
11(2% |72 5 312%| 48 1
1|24 |80 3 3123 72 1
1]2%42 |42 1 312 | 96 1
1(12%2 |84 1 3129 | 120 2
1|24 ]88 1 42501120 1
1| 3612 2

Table 1: Zero relation counts for various parameters
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P(1,16,8,(—8,8,4,8,2,2,—1,0)) (108)

P(1,64,6,(16, —24, —8,—6,1,0)) (109)
P(1,2"%,24,(0,0,2', —2" 0, -2% 256, -3 - 2%, 0,0, —64, —128,0, —32, —32,
—48,0, 24, —4,-8,0,—2,1,0)) (110)
P(1,2'% 24, (2", 2" —2 0, 29 —210 28 0,

—28 27260, -32,32,32,0,8,16,4,0,4,2, —1,0)) (111)
P(1,2'%, 24, (=2 —2'0 210 7.2% 256,3 .25 64,3-27,0,0,0,0,8, —32, —16,
12, —4,4,-1,8,0,—1,0,0)) (112)
P(1,2",24, (27, —2" —2% 256,0,256,64,3 - 27,64,0,0,0, -8, —16, 8, 12,0,
4,-1,2,—1,0,0,0)) (113)
P(1,2",24,(3-2° —3-2',0,-256,0,0,192,3 - 2,0,0,0, —64, —24, —48,
0,—-12,0,0,-3,2,0,0,0,0)) (114)
P(1,2" 24, (—2',3. 27,27 256,128,128, —64, —192,0, 32,0, 32, 16, 16,
—8,0,—2,-2,1,0,0,0,0,0)) (115)

P(l, 2207 40, (07 218, _2187 2177 0,5 - 2167 2167 —5. 215’ 0, _2167 _214’ 2137
0,—5-2'2 2l 5.9 210 9210 _oll o _5.98 956 —5.27 0,64, —64,
32,0,0,16, —40,0,4,16,2,0,—5,1,0)) (116)
P(l, 2207 40, (2187 _219’ 0, _2177 3. 2157 2167 0,0, 2147 2137 0, _2137 _2127 2127
5.210 0,210 21 0, -2 —256,256,0,0, —96, —128, 0, —32, —16, —24,
0,0,4,—8,—5,-2,—1,1,0,0)) (117)
P(1,2%0 40, (—2'%,3-2'% 0, -2'8 —13-2'%,0,0,5 - 2'5, -2 213 0, -2,
212 0,5.210 5.2 210 3.910 (0 3.29 256 0,0,5-27,13 -2,

192,0, —64, 16, 40,0, 40, —4,12, =5, —4,1,0,0,0)) (118)
P(1,2%0 40, (2", -3 - 219 218 0,29 3.2'7,

_2167 0, 215’ 216’ 2147 0, _2137 3. 213’ 2147 0,

2!l _3.211 910 9 29 3.29 928 0, —2% —3.27,

26,0, -2 —26 2% 0,2% —3.2% —2*0,-2,6,—1,0)) (119)
P(2,2'%,24,(0,2'° —3-2' 29 0,21 0,9-27,3-27,64,0,128,0, 16, 48,72,
0,16,0,2,—6,1,0,0)) (120)
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P(2,2" 24, (—2'",0,17- 21, —17.219 29 —15.2'° 256, —63 - 2°,
—17-2%,0,64,—5-2%,32,0,—17-2°, —63 - 2%, —8, —240, 4, —68, 68,

0,—1,0)) (121)
P(2,2% 40, (2", -3 .22 218 13. 2% 3.220 _3.218 216

—95. 216’ 215’ _3. 2167 _2147 13 - 214’ _2137 —_3. 214’ _3. 215’ _95. 212’

2!l _3.9212 _9ol0 _3.912 99 _3.910 956 —25.28 —3.219,

—3-2% —64,13-26, -32,-192,16, —25 - 2* 8, —48,96,52, —2, —12,1,0))

(122)
P(3,2" 24, (2", —19- 211 5. 21 oM 929 _923.210 956, —27.2'
—5.21 -19.27 —64,-7-29 —32,-19.25 —5.28 —27.20 8,
—23-2% —4,-8,160, -38,1,0)) (123)

P(3,2% 120, (7-2% —3.5%.2% 1579.2°7 —29.2%0 _3.23.31.2%
3.5-2607.2% 7.2 _1579.2% —3.52.2% _7.9% _5.11.43.2%,
—7-2% -3.5%.2%3.7.13-2%2 67.2%,7.2°1 3.5.2% _7.2%
3-631-2% 1579218 —3.5%.2%0 7.218 53.17.217 3.23.31 .21
—3.52.218 1579.2%15 _29.218 _7.9% 3.5.9218 7.91 g7.217
—1579-2% —3.5%.21 _3.23.31-2% —5.11-43.2% —7.21,
—3.5%.2% _1579.2% —31.13.2% 7.2% 3.5.212 _7.9238

—20.210 _3.7.13.2% —3.52.238 7.9236 53.17.2% 7.93
—3-.5%.2% 1579.23 —29.2% _7.233 3.5.2% 3.923.31.23

67-2% —1579.2%0 —3.5%.2% 7.2 _3.5.2% _7.9%

—3.52.2% _1579.2%7 67-2%,3.23.31.2%63.5.2% _7.226
—29.228 1579 .22 _3.52.2% 7.9% 53.17.9% 7.9223

—3.5%.2% _3.7.13.2%2 -29.22% _7.221 3.5.9224 7.2%0
—3%.13-219 —1579.218 —3.52.220 _7.218 _5.11.43.2!7,
—3-.23.31-2% —-3.52.2"8 _1579.2" 67.2% 7.2 3.5.2!8
—7.21 —29.9216 1579.212 _3.52.21 3.93.31.2!1 5%.17. 21

7.2 -3.52.2"2 1579-2° 3.631-2%, —7-2%3.5.212 7.28,
67-2",3.7-13.2", -3.5%.2% —7.26 —5.11-43.2°, -7.2°,
—3-5%.26 —1579.23.67-27,7-2%3.5.26, —-3.23.31-2,

—29-2% 1579, -3 -5%-2%,7,0)) (124)
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P(3,2%,120,(2°%,0, —353 - 2°7, 7. 202 3.7.113.2% —3%.5.2% 25
—97.250.353. 2% 0, —2% 5.331-2% —25 0,—-3.337-2%2 —97.256 251
—3%.5.2% 250 _32.939.219 _353.2% 0 218 _53.19.217 _3.7.113.21,
0,—353-2% 7.2%0 215 _33.5.917 911 _97.918 353.9% (0 3.7.113. 2%,
5.331-24 2% 0,353.2% —36.239 939 _33.5.911 _938 7.912
3-337-2%7,0,2%, —5%.19.2% 2% (0, —353.23 7.238 233 _33.5.9%,
—3.7-113-2%,-97.23%6 353.2% 0,230 —32.5.23 2% 0,353 .27,
—97-2%2 -3.7.113-2%, -3%.5.2% 9226 7.9230 _353.9% 224
—5%.19.2% 223 (0,3.337.2%2,7.2%6 221 _33.5.9223 220 _36. 919
353-21% 0, —218 5.331-2'7,3.7-113-2% 0,353 - 2%, —97.220 215,
—33.5.217 2l 7.218 _353.912 0 _3.7.113.2!" —5%.19.2!1 2l
—353-29,-3%2.239.29 —2° —3%.5.2!1 28 _97.212 _3.337.27 0, -2°
5-331-2°,—2°.0,353-2%, —97.2% 23 —3%.5.2°

3-7-113-2,7-2% -353,0,1,0)) (125)
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P(4,2%120,(—31-2%,3.269-2%, —5.61-107 - 2°,
1553 - 209,32 . 14243 . 2°¢. —3 . 1051 - 299, —31 - 2%,
—9319-2%,5.61-107-2°* 3269 - 2°6, 31 - 254,
31-3187-2%,31.2% 3.269-2% —3%.5.1061 - 2°2,
—9319 - 2%, —31-2%1 —3.1051 - 2°4,31 - 2%, —3 . 38567 - 2%,
—5-61-107-2",3.269-2% —31.2% —55.41.2%7
—32.14243 -2 3.269 - 2% —5.61-107 - 2%°, 1553 - 218,
31-2% —3.1051-2%, —31-2% -9319.2% 5.61-107 - 22,
3-269-2% 32.14243 - 2% 31.3187.2% 31.2%,
3-269-2%2.5.61-107-2% —3%.7.37.2% -31.2%,
—3-1051-2%,31-2% 155321 32.5.1061 - 2%,
3-269-2% —-31.2% _5°.41.2% —31.2%,
3-269-2% —5.61-107-2% 1553 -2% 31.2%,
—3-1051 - 2% —3%.14243 . 231 9319 . 235,
5-61-107-2%°3.269-2%% 31-2%, —3.13.47.2%,
31-2%.3-.269-2% 5.61-107 227, -9319 - 231,
—3%.14243 - 2%, -3 .1051 - 2% 31 - 2% 1553 - 228,
—5-61-107-2%*,3.269 2% —31.2% —5°.41.2%,
—31-2%3,3.269-2% 3%.5.1061 - 222, 1553 - 2%,
31-2% —3.1051-2*, -31-2%, —-3".7.37.2"9,
5-61-107-2'%,3.269-2%° 312" 31.3187-2'7,
32.14243 -2 3.269-2'% 5.61-107 -2, —9319 . 219,
—31-2'% —3.1051-2'8 312" 1553 .21
—5-61-107-2'%,3.269 -2 —32.14243 . 2'1

—5°.41 .21 —31.21 3.269 . 2'2,

—5-61-107-2% —3-38567 -2 31-2°, —3-1051 - 2'%,
—31-28,-9319 -2 —3%2.5.1061-27,3-269 - 2%,
31-2531-3187-2°31-2%3-269 - 25,

5-61-107-2% -9319-27, —31-2% —3-1051 - 2°,
3214243 -2,1553 - 21, —61-107- 5,3 - 269 - 22, —31,0))

P(1,729,12, (0,81, —162, 0,27, 36,0,9,6,4, —1,0))
P(1,729,12, (243, —324, —162, —81,0, —36, —9, 0,6, —1,0,0))
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Relation 108 appeared in [13]. Relation 109 and 110 were given in [15]. Relations 111
and 119 are due to Jaume Oliver Lafont [27]. Lafont subsequently proved 110 through
118 [28]. Relations 112 through 118 and 120 through 123 and 127 and 128 were found
experimentally by the author using his PSLQ program, but in the wake of the other
relations in this list are now proven. Relation 123 has been proved by Kunle Adegoke
as the difference of Formulas 37 and 45. Relations 124 through 126 are due to Kunle
Adegoke [2], who also proved 127 and 128 [3].

13 Curiosities

There are two other formulas worth mentioning, although neither, technically speaking,
is a BBP-type formula. The first formula employs the irrational base b = 2/¢ = 2¢ — 2,
where ¢ is the golden mean (see Section 9):

37T\/$_1

55/4 - @P(la 2/¢> 107 (256¢7 128¢37 64¢47 32¢47 07 _8¢67 _4¢87 _2¢97 O)) (129)

The second example of this class is the formula
1 (9 1 <= Dy 1
) = = B 130
VT (10) 10%1016 (k+1)’ (130)

where the D coefficients satisfy the recurrence Dy = Dy = 1, and Dy, = Dy — 5Dy for
k > 2. It is possible that a variant of the original BBP algorithm can be fashioned for this
case, on the idea that the Dy comprise a Lucas sequence, and as is known, evaluations
of sequence elements mod n can be effected via exponential-ladder methods. These two
formulas appeared in [15].
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