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Abstract. Box integrals—expectations 〈|~r|s〉 or 〈|~r − ~q|s〉 over the unit n-cube (or n-
box)—have over three decades been occasionally given closed forms for isolated n, s. By
employing experimental mathematics together with a new, global analytic strategy, we
prove that for n ≤ 4 dimensions the box integrals are for any integer s hypergeometri-
cally closed in a sense we clarify herein. For n = 5 dimensions, we show that a single
unresolved integral we call K5 stands in the way of such hyperclosure proofs. We supply
a compendium of exemplary closed forms that naturally arise algorithmically from this
theory.
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1 Preliminaries

We define box integrals1 for positive-integer dimension n as expectations of |~r|s, |~r − ~q|s
with the relevant vectors chosen randomly, independent, equidistributed over the unit
n-cube2 [13]:

Bn(s) :=

∫
~r∈[0,1]n

rs D~r

=

∫ 1

0

· · ·
∫ 1

0

(
r2
1 + · · ·+ r2

n

)s/2
dr1 · · · drn, (1)

∆n(s) :=

∫
~r,~q∈[0,1]n

|~r − ~q|s D~r D~q

=

∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)2 + · · ·+ (rn − qn)2

)s/2
dr1 · · · drn dq1 · · · dqn. (2)

Here, D~r denotes simply the volume element dr1dr2 · · · . As explained in a previous
treatment [5], there are physical interpretations:

1. Bn(1) is the expected distance of a random point from the origin (or from any fixed
vertex) of the n-cube;

2. ∆n(1) is the expected distance between two random points of the n-cube;

3. Bn(−n + 2) is the expected electrostatic potential in an n-cube whose origin has a
unit charge;3

4. ∆n(−n + 2) is the expected electrostatic energy between two points in a uniform
cube of charged “jellium.”

Note that the definitions show immediately that both ∆n(2m) and Bn(2m) are rational
when m,n are natural numbers. A pivotal, original treatment on box integrals is the 1976
work of Anderssen et al, [1]. There have been interesting modern treatments of the Bn

and related integrals, as in [7], [11, p.208], [27] and [25]. Related material is also to be
found in [16, 26].

There are other similar entities such as the expected distance between points on dis-
tinct sides of a cube or hypercube investigated in [11, §1.7] and [7]. We remark that B3(1)
is also known as the Robbins constant, after [22].

1Not to be confused with “box integrals” of particle physics.
2We refer to “box integrals” but use the more standard term “cube” or “n-cube” for the domain

hypercube.
3Such statements presume that electrostatic potential in n dimensions is V (r) = 1/rn−2, and say log r

for n = 2; the main issue being that negative powers of r can also have physical meaning.
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It is worth noting that the methods of the present paper actually have practical
application—for example in biology, of all places. In the work [14] these new box-integral
evaluations are being used as one measure of “how random?” is a point cloud. That is, one
test of whether brain synapses are sufficiently randomly distributed involves comparison
of empirical values 〈|~r − ~q|s〉, where ~r, ~q run over synapse positions, against our present
theoretical tabulations of ∆3(s).

2 Quadrature formulae for all complex powers

As in our previous treatment [5], we define two key functions as

b(u) :=

∫ 1

0

e−u
2x2

dx =

√
π erf(u)

2u
, (3)

d(u) :=

∫ 1

0

∫ 1

0

e−u
2(x−y)2 dx dy =

−1 + e−u
2

+
√
π u erf(u)

u2
. (4)

These functions may be used as integration kernels, in the following way. Writing

Rs =
1

Γ(−s/2)

∫ ∞
0

t−s/2−1e−tR
2

dt, (5)

valid for <(s) < 0, we can integrate formally over R (being a radius, or a separation) in
a relevant region, to obtain

Bn(s) =
2

Γ(−s/2)

∫ ∞
0

u−s−1bn(u) du, (6)

∆n(s) =
2

Γ(−s/2)

∫ ∞
0

u−s−1dn(u) du, (7)

both representations being valid for a reduced range of complex s, namely the range
<(s) ∈ (−n, 0). This domain of convergence for the integrals can be inferred from the
large-u asymptotic behaviors, see e.g., [2],

b(u) =
1

u
+O

(
e−u

2
)
, (8)

d(u) ∼
√
π

u
− 1

u2
+O

(
e−u

2
)
, (9)

so that having integrand factors bn, dn respectively allows integral convergence for the
stated range <(s) ∈ (−n, 0). Throughout n will denote a natural number.

What can we say about analytic continuation in s? We can extend such previous
results to all complex s, by paying deeper attention to integrand structure. First, we can
extend the region for negative <(s) arbitrarily, by finding superpositions of terms b(ku)
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or d(ku), for integers k, such that the n-th powers of the asymptotic forms (8, 9) are
genuinely of exponential decay.

Second, for positive <(s) and a positive integer K, we may employ the integral identity

D(ρ,K) :=

∫ ∞
0

t−ρ−1
(
1− e−tu

)K
du = Γ(−ρ)

K∑
j=1

(
K

j

)
(−1)jjρ. (10)

from which it is straightforward to derive integral representations for all s in the open
right half-plane except for the positive even integers.

Theorem 1 [Quadrature formulae for general complex s] In the region with
<(s) < 0 we have

Bn(s) =
2

1− 2n+s

1

Γ(−s/2)

∫ ∞
0

u−s−1 (bn(u)− 2nbn(2u)) du. (11)

For ∆n(s) in the same s-region, let A1 := 1 and consider the unique solution (A2, . . . , An+2)
to the linear system

0 =
n+2∑
k=1

Ak
kq
, q = 0, 1, 2, . . . , n. (12)

Then

∆n(s) =
2

Γ(−s/2)

(
n+2∑
k=1

Akk
n+s

)−1 ∫ ∞
0

u−s−1

(
n+2∑
k=1

Akk
ndn(ku)

)
du. (13)

Next, consider the region <(s) ∈ (0, 2K) with K a positive integer and s not an even
integer. We have

Bn(s) =
2

D(s/2, K)

∫ ∞
0

u−s−1 du
K∑
j=1

(
K

j

)
(−1)jbn

(
u
√
j
)
, (14)

∆n(s) =
2

D(s/2, K)

∫ ∞
0

u−s−1 du

K∑
j=1

(
K

j

)
(−1)jdn

(
u
√
j
)
. (15)

Remark: As for nonnegative even integers s not covered in the above theorem, the
definitions (1, 2) immediately yield rational values for Bn, Dn respectively upon symbolic
integration.

It is interesting that even though the goal of the above development is to provide
practical quadrature formulae, we already have a byproduct:
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Corollary 1 [Pole structure of the box integrals] Bn(s), for positive integer n, has
precisely one pole, namely at s = −n. ∆n(s), on the other hand, always has precisely
(n+ 1) poles, located at s = −2n,−2n+ 1, . . . ,−n.

Proof: Clearly, by the original definitions (1) and (2), Bn(s),∆n(s) are both finite for
nonnegative <(s) so it suffices to look at negative <(s) in any case. For Bn(s), relation
(11) has a pole factor at s = −n.

As for ∆n(s), the solution (Ak) to the system of equations is unique since the ma-
trix with entries (−1)k/(k + 1)j−1 for 1 ≤ k, j ≤ n is nonsingular with determinant
(−1)bn/2c

∏n−1
i=1

i!
(n+1)!

(see sequence A002109 in Sloane’s Online Encyclopedia of Inte-

ger Sequences). Poles of ∆n force the prefactor
∑n+2

k=1 Akk
n+s to vanish exactly when

n+ s ∈ [−n, 0], thus giving a total of (n+ 1) poles on the negative real s-axis. It remains
to check that

∑n+2
k=1 Akk

n+s has no other zeros. This runs as follows. Consider the more
general exponential sum

ΦN(t) :=
N∑
j=1

αjβ
t
j = 1

for arbitrary real constants αj and positive βj. If ΦN(t) = 1 has more than N solutions
then Rolle’s theorem and some manipulation will produce a derived system with at least
N solutions and one less term. We are done, since when N = 1 this is impossible. QED

By employing the quadrature options embodied in Theorem 1, we have been able to
calculate various Bn(s),∆n(s) values to extreme precision.4

One may also use the quadrature prescription to create contiguous plots of box in-
tegrals, as in Figure 1. Referring to Figure 1, note that both plots show the “natural”
pole at s = −2, where the standard expectation integral diverges for n = 2 dimensions.
However, we see that ∆2 also has poles at s = −3,−4 as in Corollary 1.

3 Quadrature experiments

We have employed the quadrature schema of Theorem 1 to effect extreme-precision values.
We might mention here that in fact this research began in earnest with the discovery,
using the PSLQ integer relation algorithm (see [15] and [8]), that the extreme-precision
numerical value we were able to compute for ∆3(−1), namely

∆3(−1) = 1.88231264438966016010560083886836758785246288031070 . . . (16)

4As in previous works, by “extreme precision” we mean, loosely speaking, enough precision to resolve
a given entity into fundamental (or at least previously studied) constants; in the modern era—the age of,
say, LLL and PSLQ methods—this usually means precision to hundreds to thousands of decimal digits.
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was (experimentally) given by the formula

∆3(−1)
?
=

2

5
+

2

5

√
2− 4

5

√
3− 2

3
π − 6 log 2 + 2 log

(
1 +
√

2
)

(17)

+12 log
(

1 +
√

3
)
− 4 log

(
2 +
√

3
)
. (18)

Soon we were able to prove this evaluation.5 Upon further experimentation and ana-
lytic discoveries, we realized that not only do some Bn for various n have constants in
common—such as log-surds, π, and so on—but the ∆n constants also have many con-
stants in common with themselves and the Bn. Such experimentation/detection moved
us to find algebraic relations between the various entities, as we describe in this paper.

Our numerical approach was to implement, using the Fortran-90 interface to the
ARPREC arbitrary precision software package [10], the four formulae of Theorem 1,
namely (11), (13), (14) and (15), and the definitions of the functions b(u), d(u) and
D(ρ,K) as given by formulae (4), (3) and (10). As stated in Theorem 1, these formulae
are valid for all s except for positive even integers. For positive even arguments the in-
tegration in (1, 2) is trivial and the relevant box integral is rational, obtainable quickly
with symbolic processing.6

Computation of b(u) is entirely straightforward, once one has in hand an implemen-
tation of the erf function (see [2, pg. 297–298]).

Computation of d(u) is complicated by the fact that for small arguments, cancellation
of terms in the numerator typically results in severe relative numerical error. This can be
ameliorated by employing the Taylor series for d(u):

d(u) = 1− u2

6
+
u4

30
− u6

168
+

u8

1080
− u10

7920
+

u12

65520
− · · · (19)

=
∞∑
n=0

(−1)nu2n

(2n+ 1) · (n+ 1)!
(20)

Computation of the Ak coefficients was achieved by employing an arbitrary precision ver-
sion of the well-known Linpack program for solving linear equations via LU decomposition
[20].

The four formulae (11), (13), (14) and (15) of Theorem 1 themselves involve signifi-
cant numerical difficulties, as they involve near-cancellation of terms for small arguments.
Nonetheless we were able to compute the Bn(s) and Dn(s) to approximately 470-digit

5That is to say, the ?= became =. In the present work, we use = to mean rigorously proven, even
though some of our more recondite expressions were first found in the ?= sense, then later proven.

6Mathematica and Maple were both used quite heavily for much of this paper’s development, and
most of the work was symbolic. We have endeavored to check all results numerically, even after obtaining
exact, symbolic forms. That being said, elsewhere in this paper we have for efficiency eschewed comments
about which computer algebra system was used where.
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accuracy, utilizing 500-digit working precision, by using Gaussian quadrature, after split-
ting the integral into the intervals (0, 1) and (1,∞), and applying the simple substitution
w = 1/u on the second integral.

We should add here that tanh-sinh quadrature [24], which we have used in numerous
other studies of this sort, was not needed in this case, because each of the integrand
functions in Theorem 1 are regular on the intervals of integration. In addition, the tanh-
sinh scheme suffers here from the cancellation difficulties mentioned above, since it relies
on evaluating the function very close to endpoints of the interval.

The numerical values we obtained in this fashion were used in conjunction with the
PSLQ integer relation algorithm to find many of the analytical evaluations presented in
this paper. All results are summarized in the Appendix. As explained at the beginning
of the Appendix, 400-digit numerical values of these constants are available on a website.

To confirm the accuracy of the results in the Appendix, the B and ∆ integrals were
separately computed using 500-digit working precision, programmed with the C++ inter-
face to the ARPREC package. Integrals were evaluated by formulas (11), (13), (14) and
(15), using Gaussian quadrature, and imported into Mathematica as numerical values. A
parser for LaTeX source provided with Mathematica 7.0 was used to import the analyt-
ical formulas from the Appendix in a machine-readable format. Conversions were made
to use Mathematica built-in routines for computing the Lewin arctan integral, Clausen
function and hypergeometric function. The accuracy of these formulas was then checked
by subtracting the numerical values computed by quadrature with numerical values pro-
duced by Mathematica for the analytical formulas. In our first application of this method,
four errors were found among the Bn(s) formulas given in the Appendix. Fortunately,
in each case we were able to find the correct formula merely by running PSLQ on the
vector consisting of Bn(s) and the listed terms without coefficients. These results were
then double-checked using Mathematica.

We observe that this type of checking—computing extreme-precision numerical val-
ues for specific instances of left-hand side and right-hand side expressions in a formula,
then comparing the results—is very generally applicable and highly effective in disclosing
“bugs” in papers presenting new mathematical results. Its adoption would prevent many
mistakes from making their way into published papers.

4 Analytic continuation for the Bn

In our previous work [5] we demonstrated that the Bn expectations can always be reduced
by at least one dimension; for example, via vector-field algebra, Bn can be obtained from
an integral over the (n− 1)-dimensional unit cube, like so for n > 1:

Bn(s) =
n

n+ s

∫
~r∈[0,1]n−1

(1 + r2)s/2 D~r. (21)
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Note that already with this reduction we see that Bn has a single, simple pole at s = −n,
as the integral exists for all complex s.

With the advantage of hindsight, we define right now a general and quite useful func-
tion

Cn,k(s, a) :=

∫
~r∈[0,1]n

r1r2 · · · rk (a+ r2)s/2 D~r, (22)

and we also define C0,0(s, a) := as/2. In this way we can begin developing relations for
the Bn, as follows:

B1(s) =
1

s+ 1
C0,0(s, 1) =

1

s+ 1
, (23)

B2(s) =
2

2 + s
C1,0(s, 1) =

2

2 + s
2F1

(
1

2
,−s

2
;
3

2
;−1

)
, (24)

B3(s) =
3

3 + s
C2,0(s, 1) =

6

(3 + s)(2 + s)

∫ π/4

0

(
(1 + sec2 t)s/2+1 − 1

)
. (25)

Note that the apparent pole at s = −2 for B3(s) is specious; the 1/(s+ 2) factor cancels
in this case, to yield

B3(−2) = 3

∫ π/4

0

log(1 + sec2 t) dt. (26)

It will be important later to observe a recurrence for the C-function in (25), which recur-
rence will also play a major role in our later development of the ∆n box integrals.

For n = 4 and higher dimensions, such relations for the Bn rapidly become unwieldy.
Take n = 4, and note that C3(s, 1) is a 3-dimensional integral which yields, after integrat-
ing first in polar coordinates (r, φ) to handle two of the dimensions,

B4(s) =
4

4 + s
C3,0(s, 1) (27)

=
8

(4 + s)(2 + s)

∫ π/4

0

dφ

∫ 1

0

(
(1 + sec2 φ+ z2)s/2+1 − (1 + z2)s/2+1

)
dz.

Again the specious pole factor for s = −2 cancels, giving the special case

B4(−2) = 2

∫ π/4

0

dφ

∫ 1

0

(
log(1 + sec2 φ+ z2)− log(1 + z2)

)
dz. (28)

Though we are left with some stultifying integrals, the complete continuations above for
B1, B2, B3, B4 do indicate some powerful experimental-mathematical pathways. Later we
shall be able to build upon previous literature results by adding new closed forms to our
knowledge.
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There is another form of analytic relation also derived previously [5], namely

Bn(s) =
ns

n+ s

∑
(−s/2)k

(
2

n

)k
βn−1,k, (29)

where the β coefficients arise from the b function, implicitly as(
b(u)etu

2
)n

=:
∑
k≥0

βn,k2
ku2k. (30)

and (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol.
The β numbers enjoy the relations (here, d!! means 1 · 3 · · · d for odd-positive integer

d):

βn,k =
∑

k1+...kn=k

1

(2k1 + 1)!!
· · · 1

(2kn + 1)!!
,

βn,k =
k∑
j=0

1

(2k + 1)!!
βn−1,k−j,

(1 + 2k/n) βn,k = βn,k−1 + βn−1,k, (31)

with the recursions here ignited by β0,k := δ0,k and βn,1 = n/3. Here !! denotes the double
factorial function: m!! = m(m− 2)(m− 4) · · · 3 · 1 if m is odd, and m!! = m(m− 2)(m−
4) · · · 4 · 2 if m is even.

The main point is, for n > 1 the sum (29) is linearly absolutely convergent for all
complex s. (The summand decay factor is essentially (1− 1/n)k.) Accordingly, the series
gives the analytic continuation over the entire s-plane. This series representation can
be used computationally, either in place of the quadrature formulae, or as an extreme-
precision check on same. The analytic series does have one advantage over the quadrature
formalism: One need not break the plane by polarity in <(s); the series (29) always
converges (and there is the correct single-pole factor 1/(n+ s)).

5 Theory of hyperclosure and of the C-functions

We have seen that the box integrals Bn are expressible in terms of C-functions. It will
turn out that there exist recurrence relations between C-functions; this leads eventually
to relations between ∆n and Bn values, and closed forms in many cases.

To quantify for our purposes what is a closed form, we first establish7

7It has occurred to the present authors that the age-old notion of “closed form” might be addressable,
as a separate research program, vis such as our Definition 1. It is a pleasant task to be able to talk about
closed forms with some semblance, at least, of rigor.
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Definition 1 [Ring of hyperclosure] We define a hypergeometric evaluation in a clas-
sical sense—to be a complex number

∑
n≥0 anz

n where z is complex algebraic, a0 is a real
rational, and generally an+1 = r(n) an where r is a fixed rational-polynomial function
(ratio of two polynomials each with integer coefficients). We then contemplate the ring of
hyperclosure, generated by all hypergeometric evaluations under ordinary operators (·,+).
An element of this ring is said to be hypergeometrically closed ( hyperclosed for short).
We also deem ∞ to be hyperclosed (so that hyperclosure not be denied at poles).

As examples, any rational (a sum with one term, say r := 0) is hyperclosed, and since

√
2 = 2F1(−

1

2
, 1, 1;−1), π = 4 2F1(

1

2
, 1, 3/2,−1), log(1 + z) = z 2F1(1, 1, 2;−z),

it follows that combinations such as
√

2 + π, π
√

2, π10 log7 2, 1
3

log(1 +
√

2) are all hy-
perclosed. Relevant to the present work is the fact of the Lerch transcendent

Φ(z, s, a) :=
∑
n≥0

zn

(n+ a)s
, (32)

being hyperclosed for algebraic z, integer s, and rational a. Thus, we shall have hyperclo-
sure for any polylogarithm Lis(z) :=

∑
n≥1 z

n/ns for integer s and algebraic z, so perforce
for the Lewin arctan integral

Ti2(z) :=
∑
n≥0

(−1)n
z2n+1

(2n+ 1)2
=

z

4
Φ

(
−z2, 2,

1

2

)
, (33)

and the Clausen function

Cl2(z) :=
∑
n≥1

sin(nz)

n2
. (34)

Our box-integral tables have hyperclosed entries, except where “dangling integrals” remain
when dimension n > 4. (Although we admit such unresolved integrals may still belong to
the ring.)

An interesting sidelight looms here: What numbers are not hyperclosed? Certainly
we need such numbers to exist, lest our entire research program of finding hyperclosed
expressions be a vacuous exercise. Given the algebraic character of parameter z in Defini-
tion 1, and the constraint that the succession ratio r(n) be rational-polynomial, together
with the fact of all group generations under (·,+) yielding finite strings, we conclude that
the ring of hyperclosure is countably infinite. Therefore: Almost all complex numbers are
not hyperclosed. Equivalently, the ring of hyperclosure is a null set in the complex plane.
As often happens in such analyses, we are stultified by the question: “If non-hyperclosed
numbers are so overwhelmingly abundant, what is an example of such a number?” Well,
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we do not presently know a single such number. Perhaps ππ is not hyperclosed, but such
questions loom Hilbertian in their evident profundity.8

It is evident that the lowest-lying C-functions allow direct hypergeometric evaluation,
so that B1(s), B2(s) are hyperclosed for any integer s, but that already for C2,0 we run
into some difficulty with the integration. Happily, there are some powerful connection
formulae that we prove presently, starting with

Theorem 2 [Convergent series for C-functions] For all complex s, integer n > 1,
and <(a) > 0 we have

Cn,0(s, a) = (n+ a)s/2
∑
k≥0

(
2

n+ a

)k
(−s/2)k βn,k , (35)

which expansion being linearly convergent with k-th summands being O
(
((n− 1)/(n+ a))k

)
.

Proof: This expansion can be established using the same methods as for expansion
(29), which is the case a = 1 as shown in [5]. QED

And now for the recurrence:

Theorem 3 [Fundamental relations for C-functions] Special instances of the C-
function are

Cn,0(s, 0) = Bn(s), (36)

C0,0(s, a) := as/2, (37)

Cn,0(s, 1) =
n+ s+ 1

n+ 1
Bn+1(s). (38)

More generally, for all complex s, positive integer n, and positive real a we have

asCn,0(s− 2, a) = (s+ n)Cn,0(s, a)− nCn−1,0(s, a+ 1). (39)

Another recurrence, involving now the second index on C, is, for positive integers a, k,

sCn,k(s− 2, a) = Cn−1,k−1(s, a+ 1)− Cn−1,k−1(s, a). (40)

Proof: The recurrence (39) is proved by invoking β-relation (31) to show the right-hand
side here in the theorem is 2a(∂Cn,0(s, a)/∂a) which equals the left-hand side. The recur-
rence (40) is easier, requiring simple integration by parts in the integral representation
(22) for C.

8Such a radical disconnect between theory and knowledge occurs elsewhere; e.g., in the study of normal
numbers. Though almost all real numbers are (absolutely) normal, only artificially constructed normals
are known.
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QED

We are now prepared to establish a central result that will lead to a host of closed
forms, which result being:

Theorem 4 For any integer s and positive integer a, all the numbers

Cn,0(s, a) :=

∫
~r∈[0,1]n

(a+ r2)s/2 D~r (41)

for n = 0, 1, 2 are hyperclosed.

Remark: As with other parts of the present treatment, we not only prove hyperclosure,
but do this constructively, so that an algorithm for achieving closed forms is intrinsic to
the proof.

Proof: C0,0(s, a) := as/2 and C1,0(s, a) = as/2 2F1

(
1
2
,−s/2; 3/2,−1/a

)
are clearly hyper-

closed. So we turn our attention to C2,0: For nonnegative even integer s, it is evident that
the defining integral for C2,0 yields rational values. Consider, then, a single evaluation for
negative even s, where we employ polar coordinates in the defining 2-dimensional integral
to obtain

C2,0(−2, a) =

∫ π/4

0

dt
(
log(a+ sec2 t)− log a

)
(42)

= −G+ Ti2

(
2 + a− 2

√
1 + a

a

)
+
π

2
log
(

1 +
√

1 + a
)
− π

4
log a,

where

G :=
∑
n≥0

(−1)n

(2n+ 1)2
= Ti2(1) (43)

is the Catalan constant and as before Ti2 is the Lewin inverse-tangent integral; see (32,
33). Clearly C2,0(−2, a) is hyperclosed for positive algebraic a. Now, in recurrence (39)
with n = 2, there is a term C1,0(s, a + 1) which we have seen to be hyperclosed. The
recurrence thus reveals that C2,0(−s, a) is hyperclosed for all negative even integers s.

It remains to handle all odd integers s. We observe another “ignition value”

(44)

C2,0(1, a) = −1

3
a3/2 tan−1

(
1√

a2 + 2a

)
+

1

6
(3a+ 1) log

(
a+ 2

√
a+ 2 + 3

a+ 1

)
+

1

3

√
a+ 2,

and this again drives the recurrence (39) to yield hyperclosure for any odd s. QED
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6 Hyperclosure and the Bn

Theorem 5 [General interrelations for the Bn] For integer n > 1 and all complex
s, we have a recurrence

(n+ s)(n+ s− 1)Bn(s) = s(n+ s− 2)Bn(s− 2) + n(n− 1)Cn−2,0(s, 2), (45)

and a higher-order variant

(n+ s)(n+ s− 1)(n+ s− 3)Bn(s) = s(s− 2)(n+ s− 4)Bn(s− 4) + (46)

sn(n− 1)Cn−2,0(s− 2, 2) +

(n+ s− 3)n(n− 1)Cn−2,0(s, 2).

In addition, the residue Resn of the unique pole at Bn(−n) is given for all positive integers
n by Res1 = 1 and for n > 1,

Resn = −2nBn(−n− 2)− n(n− 1)Cn−2,0(−n, 2). (47)

Finally, we have a special analytic-continuation value valid for all positive integers n:

Bn(−n− 1) = −nCn−2(1− n, 2). (48)

Remark: In cases such as s = −n where a pole is involved, an expression (n+ s)Bn(s),
on the face of it 0 ·∞, is to be interpreted as the residue Resn at the relevant pole. It turns
out that the second recurrence allow us to traverse Bn-poles. Both the residue relation
and the special analytic-continuation relation follow from the first recurrence.

Proof: The first Bn, C recurrence follows from the combination of proven relations (38)
and (39). The second, higher-order recurrence is obtained by double application of the
first recurrence. QED

Theorem 6 [Hyperclosure for specific Bn] For any integer s, each of:

B1(s), B2(s), B3(s), B4(s)

is hyperclosed. Moreover, the residues Resn at the four poles Bn(−n) for n = 1, 2, 3, 4 are
also hyperclosed.

Remark: Again the proof following is constructive; i.e., gives rise to an immediate
algorithm for generating closed forms.

Proof: From Theorem 4 it is immediate that Bm(s) = m
m+s

Cm−1,0(s, 1) is hyperclosed
for m = 1, 2, 3. So we turn to B4, and observe that for nonnegative even integer s, the
value B4(s) is rational. From Theorem 5 we have two recurrences

(3 + s)(4 + s)B4(s) = s(s+ 2)B4(s− 2) + 12C2,0(s, 2), (49)

(3 + s)(4 + s)(1 + s)B4(s) = s2(s− 2)Bn(s− 4) + 12sC2,0(s− 2, 2) + 12(s+ 1)C2,0(s, 2).

13



Inspection of these reveals that if we establish hyperclosure for B4(−1) and B4(−2), say,
then we know all B4(integer) to be hyperclosed via Theorem 4. (The first recurrence above
is ignited by B4(−1), for all B4(odd integer), while the second recurrence propagates even-
integer arguments across the pole at s = −4.) To these ends, we observe

B4(−1) = 2 log(3)− 2

3
G+ 2 Ti2

(
3− 2

√
2
)
−
√

8 arctan

(
1√
8

)
, (50)

and

B4(−2) = π log
(

2 +
√

3
)
− 2G− π2

8
. (51)

Starting with (27) and the evaluation of the jellium value J4 given in our previous paper
[5], the proof of (51) reduces to showing∫ 1

0

log (3 + s2)

1 + s2
ds =

π

4
log
(

2 +
√

3
)

+
π

4
log 2− Ti2

(
−2 +

√
3
)
−G.

Using A2.2(3) in [19] this becomes∫ 1

0

log (3 + s2)

1 + s2
ds+

π

6
log
(

2 +
√

3
)
− π

4
log 2− 1

3
G = 0.

Now substituting s = tan θ yields an expression which computer algebra evaluates as

4

3
G+

π

3
log
(

2 +
√

3
)
− Ti2

(
2 +
√

3
)
− Ti2

(
2−
√

3
)

= 0.

This is easily confirmed using [19, A2.2(3),(4)]. The proof of (50) is similarly completed;
said proof reduces to showing (73) noted below.

The hyperclosure of the Resn now follows immediately from the residue recursion
formula given in Theorem 5. QED

Another approach to recursions for Bn,∆n as a function of s (for all positive integer
n) is via the linear differential equations satisfied by b and d; see [12] and [11, pg. 270].
This leads, for example, to an implementable 5-term recursion for B4(s) in terms of
B4(s − 2), B4(s − 4), B4(s − 6), B4(s − 8) with coefficients polynomial in s. (Note that
tighter recursions are possible, as in Theorem 9 for n = 5, 6 dimensions, provided we only
demand that terms be hyperclosed.)

7 Hyperclosure and the ∆n

On the face of it, our definition (2) of the second box integral, repeated here:

∆n(s) :=

∫
~r,~q∈[0,1]n

|~r − ~q|s D~r D~q

14



would appear to present a (2n)-dimensional integration problem. But this is not so; in
fact we have quite generally

∆n(s) = 2n
∫
~r∈[0,1]n

rs
n∏
k=1

(1− rk) D~r. (52)

This reduction from 2n to n dimensions can be derived in various ways. Perhaps the most
intuitive is to look at the probability density of a coordinate difference x = rk− qk, which
turns out to be a triangle distribution with base [−1, 1] and height 1 at the origin-centered
apex; i.e., the density is 1− |x|, and the new integral form follows.

It is interesting that (52) has “leading term” 2nBn(s) arising from the 1 component
of the integrand’s product, indicating heuristically that ∆n and Bn should somehow be
analytic relatives. Indeed, one can carry such an idea much further, to end up with
powerful analytic expressions for ∆n(s). Simple symmetries of the integrand in (52)
reveal that

∆n(s) = 2n
n∑
k=0

(
n

k

)
(−1)kCn,k(s, 0). (53)

On the other hand, we have the recursion (40) that may be used to decrement the both
indices n, k on Cn,k. Thus we have the intriguing principle that ∆n can be formally
expressed in terms of Cm,0 functions, where m ≤ n. But there is more:
Some thought in regard to relations (38, 39, 45) reveals that the relevant Cm,0 values lead
back to the Bn box integrals, so that ∆n can be formally expressed in terms of the Bn.
The summary result is:

Theorem 7 [∆n as an analytic superposition of B2, . . . , Bn] For arbitrary positive
integer n and any complex s, we have an analytic superposition

∆n(s) = En(s) +
n∑

m=2

m∑
j=1

Rm,j(s)Bm(s+ 2n− 2j), (54)

where En is an elementary function and each Rm,j is a rational-polynomial function.

Remark: Thus ∆n is in general a superposition of (n+ 2)(n− 1)/2 different B terms.

Proof: This result follows from the combinatorics embodied in relations (53, 38, 39,
45). QED

Let us now give some entirely general analytic ∆n evaluations; first the easy case n = 1,
for which the sum in Theorem 7 is empty and we have a simple, elementary function:

∆1(s) = 2

∫ 1

0

(1− x)x2 dx =
2

1 + s
− 2

2 + s
. (55)
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Note the two poles, as we expect from previous analysis. Then from the combinatorics
leading up to Theorem 7 we obtain

∆2(s) = 8
(3 + s)2

s
2
+1 + 1

(s+ 2)(s+ 3)(s+ 4)
+ 4B2(s)−

4(s+ 4)

s+ 2
B2(s+ 2). (56)

Note now the existence of three poles (at s = −4,−3,−2). Going yet deeper into the
combinatorics, we have

∆3(s) =
24
(
−3

s
2
+2s+ 2

s
2
+3s− 53

s
2
+2 + 52

s
2
+3 + 1

)
(s+ 2)(s+ 4)(s+ 5)(s+ 6)

+
24

s+ 2
B2(s+ 2)

− 24(s+ 6)

(s+ 2)(s+ 4)
B2(s+ 4) + 8B3(s)−

12(s+ 5)

s+ 2
B3(s+ 2)

+
4(s+ 6)(s+ 7)

(s+ 2)(s+ 4)
B3(s+ 4).

There are some difficulties attendant on this ∆3 form; namely, the apparent pole at s = −2
is specious. In order to get such as the ∆3(−2) closed form in our tables, one needs to
take a careful limit s→ −2. Note also that ∆3 pole at s = −3 is caused exclusively by the
8B3(s) term itself. Also, one needs the residue formula from Theorem 5 for the B3(s+ 4)
term at s = −7.

At the next level we obtain the complete analytic continuation for ∆4, in terms of
B2, B3, B4,:

∆4(s) =
64
((

3 · 2 s
2
+3 + 2s+6 − 3

s
2
+4
)
s+ 21 · 2 s

2
+3 − 7 · 3 s

2
+4 + 7 · 2s+6 + 1

)
(s+ 2)(s+ 4)(s+ 6)(s+ 7)(s+ 8)

+
96

(s+ 2)(s+ 4)
B2(s+ 4)− 96(s+ 8)

(s+ 2)(s+ 4)(s+ 6)
B2(s+ 6) +

64

s+ 2
B3(s+ 2)

− 96(s+ 7)

(s+ 2)(s+ 4)
B3(s+ 4) +

32(s+ 8)(s+ 9)

(s+ 2)(s+ 4)(s+ 6)
B3(s+ 6) + 16B4(s)

−88(s+ 6)

3(s+ 2)
B4(s+ 2) +

8(s+ 8)(6s+ 43)

3(s+ 2)(s+ 4)
B4(s+ 4)

−8(s+ 8)(s+ 9)(s+ 10)

3(s+ 2)(s+ 4)(s+ 6)
B4(s+ 6). (57)

Again the apparent pole at s = −2 is specious, so one must work out another logarithmic
limit in that case. For s = −9,−10 we may use the known residues of the B-poles. (The
poles at s = −4,−5,−6,−7,−8 do exist; e.g. the term with B3(s + 2) has a pole at
s = −5.)

Theorem 8 [Hyperclosure for specific ∆n] For any integer s, each of:

∆1(s),∆2(s),∆3(s),∆4(s)

is hyperclosed.
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Remark: Thus, with Theorem 6, we now know that B1,2,3,4 and ∆1,2,3,4 are all hyper-
closed at every integer argument. Our tables show exemplary closed forms.

Proof: From the specific instances of Theorem 7 displayed above for n = 1, 2, 3, 4,
the hyperclosure of the relevant Bn(integer), together with special limits taken for the
problematic cases ∆3(−2), ∆3(−7), ∆4(−2), ∆4(−9), ∆4(−10) completes the proof. QED

8 Difficulties in n ≥ 5 dimensions

We have not been able to fully obtain hyperclosure for n = 5 because we cannot completely
handle the term C3,0 that appears in the recursions at that level. That said, we can show
hyperclosure for odd integers and report significant progress for the even cases. To begin
with we can prove that

B5(1) =
1

6

√
5 +

1

360
π2 − 4

3

√
3 arctan

(
1√
15

)
+

10

3
log

(√
5 + 1

2

)
+

7

18

{
K1 −

π

2
log
(

2 +
√

3
)}

,

and

B5(−1) =
5

3

{
K1 −

π

2
log
(

2 +
√

3
)}

+
1

48
π2 − 5

√
6 arctan

(
1√
15

)
+ 5 log

(√
5 + 1

2

)
.

where K1 is a certain definite integral that has been resolved; see next section.
More generally we have

(2 + s)(4 + s)B5(s) = 4

∫ π/4

0

∫ π/4

0

∫ 1

0

(
sec2 (a) + sec2 (b) + z2

)2+s/2
dz da db

−2π

∫ π/4

0
2F1

(
1

2
,−2− s

2
;
3

2
; − cos2(b)

)
sec4+s (b) db+

1

4

π2

5 + s
. (58)

For integer s the integral in z can be performed symbolically and the hypergeometric
function evaluated. This reduces B5(s) to a double integral expression for s = −6; and
also for s = −2,−4 on applying l’Hôpital’s rule.

The values in Table 4 then can be pieced together from the tools provided and knowl-
edge of integrals K4,K5 as discussed in the next section (the latter of these two integrals
remains unresolved as of the present writing).

Finally, as with lower dimensions, we can supply the following superposition formula
for ∆5 in terms of Bn with 2 ≤ n ≤ 5,
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∆5(s) = 160
1 + (9 + s) (26+s/2 + 210+s − 54+s/2 − 2 · 35+s/2)

(2 + s) (4 + s) (6 + s) (8 + s) (9 + s) (10 + s)

+
320

(2 + s) (4 + s) (6 + s)
B2 (6 + s)− 320 (10 + s)

(2 + s) (4 + s) (6 + s) (8 + s)
B2 (8 + s)

+
320

(2 + s) (4 + s)
B3 (4 + s)− 480 (9 + s)

(2 + s) (4 + s) (6 + s)
B3 (6 + s)

+
160 (10 + s) (11 + s)

(2 + s) (4 + s) (6 + s) (8 + s)
B3 (8 + s)

+
160

2 + s
B4 (2 + s)− 880

3
(8 + s)

(2 + s) (4 + s)
B4 (4 + s) +

80
3

(10 + s) (55 + 6 s)
(2 + s) (4 + s) (6 + s)

B4 (6 + s)

− 80
3

(10 + s) (11 + s) (12 + s)
(2 + s) (4 + s) (6 + s) (8 + s)

B4 (8 + s)

+ 32 B5 (s)− 200
(7 + s)
6 + 3 s

B5(2 + s) +
4
3

(9 + s) (291 + 35 s)
(2 + s) (4 + s)

B5 (4 + s)

− 8
3

(10 + s) (11 + s) (47 + 5 s)
(2 + s) (4 + s) (6 + s)

B5 (6 + s) +
4
3

(10 + s) (11 + s) (12 + s) (13 + s)
(2 + s) (4 + s) (6 + s) (8 + s)

B5 (8 + s) .

(59)

Inspection of (59) shows that it establishes the hyperclosure of ∆5(odd) on the basis
of the hyperclosure of all B5(odd). To summarize, and say something also about even
integer arguments, we hereby state:

Theorem 9 [Partial hyperclosure for n ≥ 5] We have, for any integer s,

2(s−2)s(s+1) B5(s−4)−(s+3) {s(3s+ 7) B5(s− 2)− (s+ 4)(s+ 5) B5(s)} = 60C2,0(s, 3),

For n = 6, a similar superposition—this time involving four B-terms—is

−6s2(s− 2)(s− 4)B6(s− 6) + (s− 2)s(s+ 2)(18 + 11s)B6(s− 4)

−(3 + s)(4 + s) {2s(8 + 3s)B6(s− 2)− (5 + s)(6 + s)B6(s)} = 360 C2,0(s, 4).

It follows that for any integer s, each of these B-superpositions is hyperclosed; moreover,
for every odd integer s, each of B5(s) and ∆5(s) is hyperclosed.

Proof: The two recurrences follow from a combination of (39, 45), and Theorem 4 implies
the hyperclosure of the two superpositions. Since we have determined the pair B5(±1)
at the beginning of this section, the first recurrence in the theorem is thereby ignited, so
B5(s) is hyperclosed for all odd s. Hyperclosure for ∆5(odd) follows from (59). QED

Remark: Hence, we can assert that the only potentially problematic values for n = 5 are
B5(−2n) and ∆5(−2n) for positive integer n. In this setting both (58) and (59) engage
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a variety of thornier issues generated by the poles. But even here we discover that all
B5(even) can be resolved with the adjunction of B5(−6) (equivalently K4) and B5(−4)
(equivalently K5), and this should yield in turn some, if not all, of the ∆5(even). We
should admit that the n = 6 recursion is basically all we know about 6 dimensional cases:
We do not know a single nontrivial closed form for a B6(s) or a ∆6(s). We can, however,
write

B6 (s) =
8

(s+ 2) (s+ 4) (s+ 6)

∫ π/4

0

∫ π/4

0

∫ π/4

0

(
sec2 (a) + sec2 (b) + sec2 (c)

)3+s/2
da db dc

− π

2

3

s+ 2
B4 (s+ 2)− π2

4

3

(s+ 2) (s+ 4)
B2 (s+ 4) ,

valid for all values of s. In particular

B6 (−7) = − 8

15

∫ π/4

0

∫ π/4

0

∫ π/4

0

da db dc√
sec2 (a) + sec2 (b) + sec2 (c)

+
3
√

2

5
arctan

(
1√
8

)
π +

3
√

2

32
π2.

Moreover, the triple integral above resolves to

1

2

∫ π/4

0

∫ π/4

0

arcsec (1 + sec2 (a) + sec2 (b))√
sec2 (a) + sec2 (b)

da db = −3

4

∫ 2

1

arcsec (z + 3) arcsec (z)

(z + 2)3/2√z + 1
dz

+
π√
8

{
2 arctan

(
3

4

)
− 3 arctan

(
7

8

√
2

)
+

√
3

2
arctan

(
2
√

6
)}

.

Thus we arrive at

B6(−7) =
2

5
K8 +

7
√

2

60
π2 − 7

√
2

5
π arctan

(
1√
8

)
+

8
√

2

15
π arctan

(
1

2

)
−2
√

3

15
π arctan

(√
24
)

(60)

where an integral form of K8 is exhibited in the next section.

9 K-integrals

In a set of marvelous preprints, G. Lamb [17] managed to largely resolve “dangling inte-
grals” from our previous work [5]. We called these Km, for m = 0, 1, 2, 3. Now, via the
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combination of proof via alternative integration (as with result (72) below), together with
the powerful Lamb techniques, we know closed forms such as

K0 :=

∫ 1

0

arctanh

(
1√
3+y2

)
1 + y2

dy =
3

2
Ti2

(
3− 2

√
2
)

+
π

4
log
(

1 +
√

2
)
− 1

2
G. (61)

Thus K0 is hyperclosed.
The next integral is perhaps the most difficult one of the present treatment. Along

the way to the following answer—having started with the Lamb method—were stages of
symbolics, at times involving over 28000 characters.

K1 :=

∫ 4

3

arcsec (x)√
x2 − 4x+ 3

dx

= Cl2 (θ)− Cl2

(
θ +

π

3

)
− Cl2

(
θ − π

2

)
+ Cl2

(
θ − π

6

)
− Cl2

(
3 θ +

π

3

)
+Cl2

(
3 θ +

2π

3

)
− Cl2

(
3 θ − 5π

6

)
+ Cl2

(
3 θ +

5π

6

)
+

(
6 θ − 5π

2

)
log
(

2−
√

3
)
. (62)

where Cl2(θ) :=
∑∞

n=1 sin(nθ)/n2 is the Clausen function, and

3 θ := arctan

(
16− 3

√
15

11

)
+ π.

It may well be that this closed form for K1 can be further simplified.
Not so hard, but certainly nontrivial, is

K2 :=

∫ π/4

0

√
1 + sec2 (a) arctan

(
1√

1 + sec2 (a)

)
da (63)

=
1

2
Ti2

(
−2 +

√
3
)

+
π

8
log
(

2 +
√

3
)

+
π2

32
. (64)

Finally, we have resolved a dangling integral from [5] involving dimension n = 5, as

K3 :=

∫ π/4

0

∫ π/4

0

√
1 + sec2 (a) + sec2 (b) da db

=
1

4
log(2 +

√
3) +

1

48
π2 − 1

10
B5(−3). (65)

Indeed the formula for the jellium constant J5 given in [5, §7.3] yields precisely (65) and
the closed form for B5(−3) is listed in Table 4.
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Moving on, we hereby define additional K-integrals, starting with

K4 :=

∫ π/4

0

arctan

(
1√

2+sec2(t)

)
√

2 + sec2 (t)
dt (66)

and

K5 :=

∫ π/4

0

∫ π/4

0

log
(
1 + sec2 (a) + sec2 (b)

)
da db. (67)

Following suggestions in [18] and significant symbolic computation, we are express K4

explicitly in terms of complex dilogarithms. The computer algebra system produced an
answer, which with some massaging became:

1√
8
K4 =

7π

16
arctan (2) +

3π

16
arctan

(
27 + 20

√
2
)
− 13π2

64

+
1

8
<
{

Li2

(√
2 + i

)
− Li2

(
−
√

2 + i
)}

(68)

+
1

4
<
{

Li2

(
4

5
− 3

5
i− 3

5

√
2− 4

5
i
√

2

)
− Li2

(
4

5
− 3

5
i+

3

5

√
2 +

4

5
i
√

2

)}
+

1

8
<
{

Li2

(
4

15
− 1

5
i− 1

5

√
2− 4

15
i
√

2

)
− Li2

(
4

15
− 1

5
i+

1

5

√
2 +

4

15
i
√

2

)}
.

The arguments of the dilogarithms here solve an interesting, degree-12 polynomial system.
One may use dilogarithm reflection formulae to obtain closed forms such as

√
8K4 = − Li2

(
1√
3
, θ

)
+ Li2

(
1√
3
, π − θ

)
− Li2

(
1√
3
, π − α

)
+ Li2

(
1√
3
, β

)
+ (π − 8θ) arctan

(
1

2

)
, (69)

where

θ := arctan

(
1√
2

)
, α := arctan

(
3 + 4

√
2

−4 + 3
√

2

)
and β := arctan

(
−3 + 4

√
2

4 + 3
√

2

)
,

with the Lewin generalization Li2(r, φ) := <Li2
(
reiφ

)
; see [19, A2.5 (1)]. It is immediate

that K4 is hyperclosed, since in our K4 formulae any arguments re±iθ are all algebraic,
and 2<Li2(z) = Li2 (z) + Li2 (z∗).

So, we know that K0,1,2,3,4 are all hyperclosed but we do not know this for K5. Var-
ious recondite, but alas partial results can be derived, starting typically from (67) and
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employing coordinates tan a, tan b over the unit 2-square. One can obtain such as a 1-
dimensional-integral form

K5 =

∫ 1

0

arctan
(√

t
)

arctan
(

1√
3+t

)
√

3 + t (2 + t)
dt− π

2
G+

π2

16
ln(3) (70)

+
π

2

(
3−
√

8
)

Ti2

(
3−
√

8
)

+
π

12
Ti2

(
1

3

)
+
π2

8
ln(
√

2− 1),

or an efficient sum

K5 =
π2

16
log 3−

∑
m≥1

1

m3m

m∑
j=0

(
m

j

)(
hj −

π

4

)(
hm−j −

π

4

)
,

where hk := 1−1/3+1/5−· · ·±1/(2j−1), with h0 := 0. This summatory representation
allows extreme-precision evaluation of K5 without recourse to quadrature per se.

Now to the concept of alternative integration: It is highly interesting that the box-
integral theory can sometimes be used to resolve previously unknown integrals that have,
on the face of it, little to do with n-dimensional boxes. A canonical example is the case
of ∆3(−2), which is obtained through the rather delicate limit process s→ −2 in (57) in
order to complete hyperclosure for n = 3. But when we attempted to evaluate ∆3(−2)
from the alternative formula

∆3(−2) = 8

∫
~r∈[0,1]3

(1− x)(1− y)(1− z)

x2 + y2 + z2
dx dy dz, (71)

we ended up with a single, troublesome arctan integral as the “dangling term.” But the
(s → −2) limit procedure does a complete hypergeometric breakdown, and all of this
proves the peculiar result

K6 :=

∫ 1

0

√
1 + z2 arctan

(
1√

1 + z2

)
dz (72)

=
1

2
− G

2
+
π

4
log(1 +

√
2) +

1

2
Ti2(3− 2

√
2).

We do not give here a direct proof of this integral relation, although G. Lamb has now
provided a fine analytic evaluation of K6; see [18]. Another example of an indirect integral
resolution is

K7 :=

∫ π/4

0

log(1 +
√

2 + sec2 t) dt

= −G+ 2 Ti2

(
3− 2

√
2
)

+
π

2
log
(

1 +
√

2
)
. (73)
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Finally, we define

K8 :=

∫ 2

1

arcsec (x+ 3) arcsec (x)√
(x+ 1) (x+ 2)3

dx, (74)

and observe that K8, along with the elusive K5, are the only unresolved instances of our
integrals K0,1,...,8.

Again, knowledge of K8 would give us B6(−7), as in (60), while hyperclosure of K5

would establish hyperclosure of all B5(integer) and thereby probably of all ∆5(integer).

10 Curiosities

One new result of some interest is that another unphysical, but valid analytically continued
value discussed in our previous work [5], namely

B4(−5) = −0.961203932689953457121659780024745 . . .

is now known in closed form. In fact, this previously mysterious analytic-continuation
value is −

√
8 arctan(1/

√
8) (see Tables and the last part of Theorem 5). However, there

are still many unexplained empirical phenomena. For example we do not know in closed
form the zero of ∆2(s) at

s = −5.1378771851212623537 . . . ,

though we have developed herein enough machinery to find this zero to extreme precision.
(See Figure 1 for a pictorial of the zero.) Moreover, we are not aware of any other zeros in
n = 2 or any other dimension; evidently, this zero of ∆2 is some kind of anomaly. There
is also an empirical local minimum for B2, at

s = 3.6675667756027541433 . . . ,

and again a closed form is unknown.
Another curiosity is that some statistical quantities over the hypercube are almost

trivial to resolve. For example, the exponential expectations

En(λ) := 〈e−λ2|~r|2〉~r∈[0,1]n ,

Fn(λ) := 〈e−λ2|~r−~q|2〉~r,~q∈[0,1]n ,

for constant λ do not need to be obtained from a generating function or series or anything
complicated. Instead, closed forms are immediate, based on the defining relations (3, 4):

En(λ) = bn(λ) =
( π

2λ

)n
erf n(λ),
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Fn(λ) = dn(λ).

The allure of such closed forms is that they hold in all dimensions, and may well replace
the box integrals Bn(s),∆n(s) as the right tools to assess the statistical character of point
clouds, again as in reference [14]. In spite of this streamlined approach to cloud measures,
it seems (heuristically) that both of

〈e−κ|~r|〉~r∈[0,1]n , 〈e−κ|~r−~q|〉~r,~q∈[0,1]n

should be extremely difficult to evaluate in any general way. Even if one were to revert
to series expansion of the exponential, one would need Bn(s) for all nonnegative integers
s, yet we have met with extreme difficulties when n > 5. This is not to claim some clever
prescription—a novel use of recurrences, or differential relations—would not solve this
problem.

And what about noninteger arguments for the box integrals? One might extend the
definition of hypergeometric closure based on such findings as

(75)

B3

(
−7

2

)
= −2π − 8

5 · 2 1
4

F1

(
5

4
;
1

2
,
3

4
;
9

4
;
1

2
,−1

2

)
+

16

5

√
π

Γ
(

9
4

)
Γ
(

7
4

) 2F1

(
5

4
,
3

4
;
7

4
;−1

)
.

Here, F1 is the Appell hypergeometric function—defined as a series in two variables [2].
Thus we expect entities such as B3(odd/2) to involve such as the Appell hypergeometric.
Such examples suggest that there might be a kind of higher level of hypergeometric-closure
theory for noninteger rational arguments s.

11 Conjectures and open questions

We conclude by reiterating the following open questions.

1. Is it a reasonable conjecture that every box integral Binteger(integer),∆integer(integer)
be hyperclosed? That is, could it be that our results for n ≤ 4 actually are extensible
for all positive integer n?

2. Is there a general evaluation (hyperclosed or not) of Bn(−n − 1) for all natural
numbers n?

3. What transpires for noninteger but rational s in dimension n ≤ 5 (see relation
(75) )?

4. What transpires for dimension n > 5, say just for any of B6(s); s ∈ (1,−1,−2,−4)?

5. Referring to Figure 1, what is a closed form for the mysterious zero? Are there any
other (possibly complex) zeros of any ∆n whatsoever? Is there a closed form for the
local minimum of B2(s) at s ≈ 3.667 . . . ?
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12 Appendix: Compendium of proven closed forms

Numerical tables in support of the following closed forms are to be found at
http://crd.lbl.gov/~dhbailey/dhbpapers/box-int-b-delta.txt
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n s Bn(s)

any even ≥ 0 rational: B2(2) = 2/3

1 -1 ∞

1 any 1
s+1

2 -4 −1
4
− π

8

2 -3 −
√

2

2 -2 ∞

2 -1 2 log(1 +
√

2)

2 1 1
3

√
2 + 1

3
log(1 +

√
2)

2 3 7
20

√
2 + 3

20
log(1 +

√
2)

2 any 2
2+s 2F1

(
1
2
,− s

2
; 3

2
;−1

)

Table 1: Some relatively easy evaluations for Bn(s). Every Bk(integer) for k = 1, 2 can
be given a closed form (see Theorem 6).
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n s Bn(s)

3 -5 −1
6

√
3− 1

12
π

3 -4 −3
2

√
2 arctan 1√

2

3 -3 ∞

3 -2 −3G+ 3
2
π log(1 +

√
2) + 3 Ti2(3− 2

√
2)

3 -1 −1
4
π + 3

2
log
(
2 +
√

3
)

3 1 1
4

√
3− 1

24
π + 1

2
log
(
2 +
√

3
)

3 3 2
5

√
3− 1

60
π + 7

20
log
(
2 +
√

3
)

3 any Integral representation (25), relation (38)

Table 2: Example evaluations of B3(s). Every B3(integer) can be given a closed form,
being as we can express every B3 in terms of a function C2,0 which we have shown to be
hyperclosed at relevant arguments.
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n s Bn(s)

4 -5 −
√

8 arctan
(

1√
8

)
4 -4 ∞

4 -3 4 G− 12 Ti2(3− 2
√

2)

4 -2 π log
(
2 +
√

3
)
− 2G− π2

8

4 -1 2 log 3− 2
3
G+ 2 Ti2

(
3− 2

√
2
)
−
√

8 arctan
(

1√
8

)
4 1 2

5
− G

10
+ 3

10
Ti2
(
3− 2

√
2
)

+ log 3− 7
√

2
10

arctan
(

1√
8

)
4 any Integral representation (27), recursions (45)

Table 3: Example evaluations of B4(s). Every B4(integer) can be given a closed form, on
the basis of recursions and “ignition values” such as the pair B4(−1), B4(−2).
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n s Bn(s)

5 -8 25
36
K4 − 25

288
π
√

2 arctan
(

1√
2

)
− 5

72
arctan

(
1
2

)
5 -6 5K4 − 5

8
π
√

2 arctan
(

1√
2

)
5 -5 ∞

5 -4 −5K5 − 5
2
π G+ 5

4
π2 log

(
1 +
√

2
)

+ 5
2
πTi2

(
3− 2

√
2
)

5 -3 110
9
G− 10 log

(
2−
√

3
)
θ − 1

8
π2 − 10 Cl2

(
1
3
θ + 1

3
π
)

+ 10 Cl2
(

1
3
θ − 1

6
π
)

+10
3

Cl2
(
θ + 1

6
π
)

+ 20
3

Cl2
(
θ + 4

3
π
)
− 10

3
Cl2
(
θ + 5

3
π
)
− 20

3
Cl2
(
θ + 11

6
π
)

5 -2 8
3
B5(−6)− 1

3
B5(−4) + 5

2
π log 3 + 10 Ti2

(
1
3

)
− 10G

5 -1 −110
27
G+ 10

3
log
(
2−
√

3
)
θ + 1

48
π2 + 5 log

(
1+
√

5
2

)
− 5

2

√
3 arctan

(
1√
15

)
+10

3
Cl2
(

1
3
θ + 1

3
π
)
− 10

3
Cl2
(

1
3
θ − 1

6
π
)

−10
9

Cl2
(
θ + 1

6
π
)
− 20

9
Cl2
(
θ + 4

3
π
)

+ 10
9

Cl2
(
θ + 5

3
π
)

+ 20
9

Cl2
(
θ + 11

6
π
)

5 1 −77
81
G+ 7

9
log
(
2−
√

3
)
θ + 1

360
π2 + 1

6

√
5 + 10

3
log
(

1+
√

5
2

)
− 4

3

√
3 arctan

(
1√
15

)
+7

9
Cl2
(

1
3
θ + 1

3
π
)
− 7

9
Cl2
(

1
3
θ − 1

6
π
)

− 7
27

Cl2
(
θ + 1

6
π
)
− 14

27
Cl2
(
θ + 4

3
π
)

+ 7
27

Cl2
(
θ + 5

3
π
)

+ 14
27

Cl2
(
θ + 11

6
π
)

5 any (58), recursions (45)

Table 4: Example evaluations of B5(s). Here θ = arctan
(

16−3
√

15
11

)
. We have proven

that every B5(odd) is hyperclosed. Note that K4 here is known, hyperclosed; yet, an
unresolved (“dangling”) integral K5 is not yet known to be hyperclosed, but may well be.
Resolution of K5 would serve to establish all the B5(even) by settling B5(−2), B5(−4),
and likely lead thus to resolution of all the ∆5(integer).
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n s ∆n(s)

any even ≥ 0 rational: ∆2(2) = 1/3

1 -1, -2 ∞

1 any 2
s+1
− 2

s+2

2 -5 4
3

+ 8
9

√
2

2 -2,-3,-4 ∞

2 -1 4
3
− 4

3

√
2 + 4 log(1 +

√
2)

2 1 2
15

+ 1
15

√
2 + 1

3
log(1 +

√
2)

2 any Formula (56)

Table 5: Some relatively easy evaluations for ∆n(s). Every ∆k(integer) for k = 1, 2 can
be given a closed form (see Theorem 8). (Note: The closed form for ∆2(−1) here has
been repaired w.r.t. the previous work [5].)
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n s ∆n(s)

3 -7 4
5
− 16

√
2

15
+ 2

√
3

5
+ π

15

3 –3,-4,-5,-6 ∞

3 –2 2π − 12 G+ 12 Ti2
(
3− 2

√
2
)

+ 6π log
(
1 +
√

2
)

+ 2 log 2− 5
2

log 3− 8
√

2 arctan
(

1√
2

)
3 -1 2

5
− 2

3
π + 2

5

√
2− 4

5

√
3 + 2 log

(
1 +
√

2
)

+ 12 log
(

1+
√

3√
2

)
− 4 log

(
2 +
√

3
)

3 1 −118
21
− 2

3
π + 34

21

√
2− 4

7

√
3 + 2 log

(
1 +
√

2
)

+ 8 log
(

1+
√

3√
2

)
3 3 − 1

105
− 2

105
π + 73

840

√
2 + 1

35

√
3 + 3

56
log
(
1 +
√

2
)

+ 13
35

log
(

1+
√

3√
2

)
3 any Formula (57)

Table 6: Example evaluations for ∆3(s). Every ∆3(integer) can be given a closed form
(see Theorem 8).
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n s ∆n(s)

4 -10 − 8
45
π
√

3− 20
9
π log (2) + 4

9
π2 + 4

3
log 2 + 1

15
log 3 + 8

3
Ti2
(
3− 2

√
2
)

4 -9 16
5
π
√

3− 32
3
π log (2)− 2

3
π2 + 16

5
π + 8

√
2 arctan

(
2
√

2
)
− 24 log 2 + 2

5
log 3

+12π log
(√

2− 1
)
− 64 Ti2

(
3− 2

√
2
)

+ 160
3
G

4 −4, . . . ,−8 ∞

4 -3 −128
15

+ 1
63
π − 8 log

(
1 +
√

2
)
− 32 log

(
1 +
√

3
)

+ 16 log 2 + 20 log 3

−8
5

√
2 + 32

5

√
3− 32

√
2 arctan

(
1√
8

)
− 96 Ti2

(
3− 2

√
2
)

+ 32G

4 -2 −16
15
π
√

3 + 16
3
π log

(
1 +
√

3
)
− 8

3
π log 2 + 4π log

(√
2 + 1

)
− 2

3
π2 + 4

5
π

+8
5

√
2 arctan

(
2
√

2
)

+ 2
5

log 3 + 8 Ti2
(
3− 2

√
2
)
− 40

3
G

4 -1 704
195
− 8

39
π − 100

13
log 3 + 120

13
log 2− 8

65

√
2 + 128

65

√
3

−140
13

log
(
1 +
√

2
)
− 32

13
log
(
1 +
√

3
)

+ 160
13

√
2 arctan

(
1√
8

)
+ 48

13
G

4 1 − 23
135
− 16

315
π − 52

105
log 2 + 197

420
log 3 + 73

630

√
2 + 8

105

√
3

+ 1
14

log
(
1 +
√

2
)

+ 104
105

log
(
1 +
√

3
)
− 68

105

√
2 arctan

(
1√
8

)
− 4

15
G

+4
5

Ti2
(
3− 2

√
2
)

4 any Formula (57)

Table 7: Example evaluations for ∆4(s). Every ∆4(integer) can be given a closed form
(see Theorem 8) .
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n s ∆n(s)

5 -12 −2
3
B2(−6) + 1

3
B2(−4) + 4B3(−8)− 3B3(−6) + 1

6
B3(−4)− 16B4(−10)+

44
3
B4(−8)− 5

3
B4(−6) + 32B5(−12)− 100

3
B5(−10) + 129

20
B5(−8)− 13

90
B5(−6)+

π
108

√
3− 7

800

5 -5,. . . ,-10 ∞

5 -3 −12304
63
− 512

21

√
2 + 576

7

√
3 + 800

21

√
5− 320

3
B2 (3) + 448

3
B2 (5)

−320B3 (1) + 960B3 (3)− 1792
3
B3 (5)− 160B4 (−1) + 4400

3
B4 (1)− 20720

9
B4 (3)

+896B4 (5) + 32B5 (−3) + 800
3
B5 (−1)− 1488B5 (1) + 14336

9
B5 (3)− 448B5 (5)

5 -1 16388
189

+ 1024
189

√
2− 192

7

√
3− 4000

189

√
5 + 64

3
B2 (5)− 192

7
B2 (7) + 320

3
B3 (3)

−256B3 (5) + 960
7
B3 (7) + 160B4 (1)− 6160

9
B4 (3) + 784B4 (5)− 1760

7
B4 (7)

+32B5 (−1)− 400B5 (1) + 8192
9
B5 (3)− 672B5 (5) + 1056

7
B5 (7)

5 1 −1279
567

G− 4
189

π + 4
315

π2 − 449
3465

+ 3239
62370

√
2 + 568

3465

√
3− 380

6237

√
5

+295
252

log 3 + 1
54

log
(
1 +
√

2
)

+ 20
63

log
(
2 +
√

3
)

+ 64
189

log
(

1+
√

5
2

)
−73

63

√
2 arctan

(
1√
8

)
− 8

21

√
3 arctan

(
1√
15

)
+ 104

63
log
(
2−
√

3
)
θ

+5
7

Ti2
(
3− 2

√
2
)

+ 104
63

Cl2
(

1
3
θ + 1

3
π
)
− 104

63
Cl2
(

1
3
θ − 1

6
π
)

−104
189

Cl2
(
θ + 1

6
π
)
− 208

189
Cl2
(
θ + 4

3
π
)

+ 104
189

Cl2
(
θ + 5

3
π
)

+ 208
189

Cl2
(
θ + 11

6
π
)

5 any odd Theorem 9

Table 8: Example evaluations of ∆5(s). It is proven that every ∆5(odd) is hyperclosed.
Yet, the situation for ∆5(even) remains open (see caption to Table 4). ∆5(even) can be
linked to B values, as with the evaluation of ∆5(−12) here—with the (12 + s)B4(8 + s)
term of relation (59) requiring a residue calculation at the B4-pole.
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Figure 1: Analytic continuation: Plots of B2(s) (top) and ∆2(s) (bottom) for real s in
various intervals. B2(s) is the expected value of rs where r is distance from origin to a
random point on the unit square [0, 1]2. Likewise, ∆2(s) is the expectation with r being
the distance between two random points. B2(s) has a solitary pole at s = −2, while ∆(s)
has three poles, at s = −2,−3,−4. Evidently, ∆2(s) also has a mysterious zero at some
real s ≈ −5.137 . . . (see text).
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