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Abstract. Large-scale eigenvalue problems arise in a number of DOE applications. This paper
provides an overview of the recent development of eigenvalue computation in the context of two
SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out
its limitations. We discuss the value of alternative approaches that are more amenable to the use
of preconditioners, and report the progress on using the multi-level algebraic sub-structuring
techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue
problems, we also examine new approaches to solving two types of non-linear eigenvalue
problems arising from SciDAC applications.

.

1. Introduction

Large-scale eigenvalue problems arise in a number of DOE applications [15, 5, 11, 37]. In
the last few years, rapid improvement in computer architecture and substantial advances in
algorithmic research have enabled application scientists to tackle eigenvalue problems with tens
of millions degrees of freedom. The purpose of this report is to summarize the latest development
of large-scale eigenvalue computation research in the context of two SciDAC projects: 1) In
the SciDAC accelerator modeling project, eigenvalue computation is required to facilitate the
optimal cavity design for the next generation accelerator. 2) In the nanoscience initiative,
eigenvalue computation plays an important role in characterizing the many-body electronic
interaction for nanoscale materials.

The research accomplishments reported below result from the collaboration between the
SciDAC TOPS team, the SciDAC nano-science team at LBNL and a number of SciDAC
application centers. It is also important to recognize that our research benefited tremendously
from the interaction between the DOE SciDAC projects and a much larger scientific community
that contributed to some of the key ideas discussed below.

Although significant progress has been made in large-scale eigenvalue calculation research, a
number of challenges still remain. This is particularly true in the area of non-linear eigenvalue
problems. We will point out these challenges and discuss future research plans aimed at meeting
these challenges.

2. Algorithms for Solving Large-scale Eigenvalue Problems

In this section, we provide an overview of the state-of-the-art algorithms for solving large-
scale eigenvalue problems. Instead of providing all the computational details associated with



each algorithm, we will try to highlight the key features of each approach and the underlying
principles that distinguish one algorithm from another. We emphasize the importance of Krylov
subspace methods, and point out its limitations. We discuss the value of alternative approaches
that are more amenable to the use of preconditioners, and report the progress on using multi-
level algebraic sub-structuring techniques to speed up eigenvalue calculation. Many algorithms
discussed here are developed for solving linear eigenvalue problems of the form,

Ax = λx, (1)

or
Kx = λMx, (2)

where A and K are often symmetric, and M is symmetric positive definite. However, there is
an increasing need to tackle non-linear eigenvalue problems in SciDAC applications. We will
examine these problems and the current approaches for solving these problems in Section 2.5.

2.1. Krylov Subspace Methods

Krylov subspace methods (KSM) remain the most reliable and effective tools for solving large-
scale eigenvalue problems. In a KSM, approximations to the desired eigenpairs of an n by n

matrix A are extracted from a k-dimensional Krylov subspace

K(v0, A; k) = span{v0, Av0, · · · , A
(k−1)v0},

where v0 is often a randomly chosen starting vector and k ≪ n. In practice, the retrieval of
desired spectral information is accomplished by constructing an orthonormal basis Vk ∈ R

n×k

of K(v0, A; k) and computing eigenvalues and eigenvectors of the k by k projected matrix
Hk = V T

k AVk.
It is well known that dominant eigenvalues well separated from the rest of the spectrum of

A converge rapidly in a standard KSM (e.g., the Lanczos or Arnoldi iteration). Furthermore, if
the starting vector v0 contains a linear combination of a few eigenvectors corresponding to the
desired eigenvalues, then K(v0, A; k) becomes invariant for a small value of k, and the eigenvalues
of the projected matrix Hk are indeed the eigenvalues of A.

However, neither of the above two conditions are easily satisfied in real applications.
For example, in both the SciDAC accelerator modeling project and the electronic structure
calculation problem, the eigenvalues of interest are clustered near zero, and it is generally difficult
to identify a starting vector that consists of only a few desired spectral components.

Two types of strategies have been developed to accelerate the convergence of KSM. The
implicitly restarting technique originally developed in [25] and implemented in ARPACK [18]
is designed to gradually filter out the unwanted spectral components from v0 by applying the
implicitly shifted QR algorithm to the projected matrix Hk. The filter applied in ARPACK
is a polynomial filter with roots set near the unwanted eigenvalues. This technique can be
extended to include rational filters with poles set near the eigenvalues of interest [27, 33]. The
use of implicit restart enables one to extract desired eigenpairs from a Krylov subspace of small
dimension, thereby keeping the cost of orthogonalization low.

The second type of techniques for enhancing the convergence of KSM involves transforming
the original eigenvalue problem into one that has a more favorable eigenvalue distribution.
This technique is particularly helpful when the eigenvalues of interest are near a target shift
σ in the interior of the spectrum. In this case, computing the the largest eigenvalues of the
shifted inverse (A− σI)−1 is often more effective than computing those of A directly. Although
rational transformation is the most commonly used spectral transformation, one may also use
polynomial transformations [26] when it is prohibitively expensive to factor A−σI into a product
of triangular matrices.



Spectral transformation is also useful for solving a generalized eigenvalue problem (2). When
both K and M are sparse, it is often more effective to compute the dominant eigenvalues of

(K − σM)−1Mx = µx. (3)

Both the implicit restarting technique and spectral transformation prove to be important in
solving generalized eigenvalue problems in the SciDAC accelerator modeling project.

In this application, the frequency domain representation of the Maxwell equation (written in
terms of the electric field E(x))

∇×

(
1
µ
∇× E

)
= ω2

c2
ǫE, x ∈ Ω

n × E = 0, x ∈ electric boundary

n ×

(
1
µ
∇× E

)
= 0, x ∈ magnetic boundary

is discretized using a hierarchical Nedelec basis [30] to yield a generalized eigenvalue problem
in the form of (2). Due to the presence of the curl-curl operator and the particular choice
of the finite element basis, the stiffness matrix K contains a null space of a relatively large
dimension. The eigenvalues of interest are small but positive. Figure 1 shows the distribution
of the eigenvalues at the low end of the spectrum.

Figure 1. The low end of the spectrum associated with a 5-cell accelerator model. The pluses
correspond to eigenvalue of interest. The zero eigenvalues are marked by a circle.

With the target shift σ placed slightly to the right of the origin (the black cross in Figure
1), the spectral transformation of the type (3) maps the eigenvalues of interest to the right
end of the spectrum. However, because the transformation also turns the zero eigenvalues into
negative eigenvalues (of the transformed problem) with a large magnitude, a simple Lanczos
iteration applied to (3) would converge to null vectors of (K,M) first. The use of implicit
restart eliminates this undesirable effect by constructing a polynomial filter that repeatedly
removes the contribution of the null vectors from the starting vector v0.

2.2. The Limitation of Krylov Subspace Methods

The approximate eigenvector z produced by a standard KSM (such as the Arnoldi or Lanczos
algorithm) can be expressed by

z = p(A)v0,

where p(ω) is a polynomial that assumes a large value at the desired eigenvalue λ̂. If z is

a good approximation to the desired eigenvector, p(λ) should be small for λ 6= λ̂. When A

has a large condition number and when λ̂ is close to other eigenvalues of A, one would need
to construct a high degree polynomial in order to produce an accurate approximation to the
desired eigenvector. The use of implicit restart reduces the storage requirement and the cost of
orthogonalization required to construct such a polynomial. However, it does not fundamentally
reduce the degree of the polynomial. Therefore, a standard KSM may not be the most efficient
way to solve such a problem due to the large number of matrix-vector multiplications required.



Spectral transformation effectively reduces the degree of p( 1
ω−σ

) required to produce an
accurate approximation to the desired eigenvector. However, in order to apply KSM to the
transformed problem (A − σI)−1x = µx, one must solve a sequence of large linear systems of
the form

(A − σI)w = v. (4)

When the size of A becomes extremely large, or when the non-zero fills in its triangular factors
are enormous, the cost of sparse matrix factorization can become prohibitively expensive in terms
of both computational complexity and memory usage. This problem can be partially resolved
by carrying out the sparse matrix operations in parallel on a distributed memory system. In the
SciDAC accelerator modeling project, we were able to solve problems with 30 million degrees of
freedom and 484 million non-zeros by distributing the sparse matrix computation on 1024 IBM
SP processors at NERSC. The total memory usage in this case is 738 GB.

However, when the size of the problem reaches several hundreds of million, this approach is
likely to be infeasible due to the current memory limitation and the poor scalability of sparse
triangular solves.

Although it is natural to consider replacing a sparse direct solver with a preconditioned
iterative solver, there are several difficulties associated with this approach. In particular, one
must solve the linear system to a high accuracy to maintain all the desired properties of a
Krylov subspace (even though the accuracy required in the approximate eigenpairs is well below
machine precision.) This could potentially be very expensive.

2.3. Alternative Methods

The difficulty of introducing a preconditioner into a KSM in a straightforward fashion is
fundamentally related to the fact that the eigenvectors of a preconditioned matrix P−1A is
generally different from the eigenvectors of A. Thus, building a Krylov subspace in terms of
P−1A does not readily provide approximation to the eigenvectors of A directly.

Two alternatives have been pursued in the last few years to overcome this problem. Both
require treating an eigenvalue problem as a problem that can be solved without making use of
the invariance property of an eigenvector.

2.3.1. Solving an Eigenvalue Problem as an Optimization Problem For problems in which A or
K is symmetric (or Hermitian) and the eigenvalues of interest are the smallest (or the largest),
one may solve the eigenvalue problem as a constrained optimization problem.

min
xT x=1

ρ(x) = xT Ax (5)

The use of a preconditioner in this formulation simply amounts to a change of variable.
When k eigenpairs are of interest, one can change the objective function in (5) to

trace(XT AX), where X is an n × k matrix subject to the constraint XT X = Ik. With
a good preconditioner, a constrained optimization scheme such as the locally optimal block
preconditioned conjugate gradient (LOBPCG) algorithm proposed in [14] tends to converge
rapidly in the first few iterations. However, as the approximation (x̂) become closer to the
desired eigenvector, the reduction in the residual norm ‖Ax̂ − ρ(x̂)x̂‖ becomes miniscule. The
slow down in convergence is mainly due to the fact that ρ(x̂) is much more accurate than x̂.
Thus as x̂ become close to the exact eigenvector, minimizing the ρ(x) is not productive.

A remedy for this type of stagnation is to refine the eigenvector approximation while fixing
the approximate eigenvalue that is already very accurate. That is, instead of minimizing the
Rayleigh quotient ρ(x), one can solve the following optimization problem instead:

min ‖Ax̂ − θx̂‖
subject to x̂ ∈ V, ‖x̂‖ = 1,



where θ is a highly accurate approximation to the desired eigenvalue and V is an orthonormal
basis for a subspace that contains x̂. This type of eigenvector refinement scheme was originally
proposed in [32] in the context of electronic structure calculation. It is later fully analyzed in
[12, 29].

The constrained optimization approach has been effective for solving large-scale eigenvalue
problems arising from the self-consistent field iteration used in electronic structure calculation.
To apply this type of algorithm to the generalized eigenvalue problem arising from the accelerator
modeling project, one must deflate the null space associated with the stiffness matrix first.
Because deflation essentially turns the mass matrix M into a dense matrix (with a slightly
smaller dimension), the cost of matrix-vector multiplication associated with the deflated problem
tends to be higher in comparison with the cost of working with the original K and M matrices.

2.3.2. Solving an Eigenvalue Problem as a System of Nonlinear Equations An eigenvalue
problem can also be viewed as a set of nonlinear equations

Ax = (xT Ax)x, xT x = 1. (6)

By treating an eigenvalue problem as a nonlinear system, one can exploit the possibility of
using Newton’s method to compute the desired eigenvalues and eigenvectors. If one has an
approximate eigenpair (u, θ), solving (6) is equivalent to finding a correction pair (z, γ) such
that

A(u + z) = (θ + γ)(u + z), and uT z = 0. (7)

This approach leads to the Jacobi-Davidson (JD) [24] algorithm, which is an extension of the
Davidson [7] and Olsen [21] algorithms. The method can be described as an inner-outer iteration.
Approximations to the desired eigenvalues and eigenvectors are computed in the outer iteration
by projecting A into a subspace V . The basis vectors of this subspace are constructed by a
sequence of inner iterations that produce an approximate solution to the following projected
linear system

(I − uuT )(A − θI)(I − uuT )z = −r, uT z = 0, (8)

where r = Au − θu.
The use of a preconditioner in JD is mainly aimed at reducing the number of inner iterations

required to produce an effective correction vector z. It has been observed that one does not need
to solve the correction equation (8) to full accuracy in order to produce a reasonable subspace
for eigenvalue approximation. However, the issue of how to control the accuracy of the inner
iteration and thus balance the work between the inner and outer iterations requires further
investigation. In some cases, the residual norm of the approximate eigenpair can be monitored
in each inner iteration by exploiting the relationship between the eigen-residual ‖Au − θu‖ and
the linear system residual associated with the correction equation (8) [20, 28]. This relationship
allows one to develop a stopping criterion for the inner iteration that is optimal in terms of the
total matrix vector multiplications used in the JD algorithm.

Unlike the LOBPCG algorithm, extending JD to a block algorithm appears to be difficult.
Hence, eigenpairs are typically computed one at a time in a JD procedure. To avoid recomputing
the eigenpair that have converged earlier, one must apply deflation explicitly in the inner
iteration.

In the SciDAC accelerator modeling project, an effective preconditioner P is constructed
implicitly from a hierarchical finite element basis. The solution to a linear system representing
a linear finite element approximation to the differential operator is interpolated onto a subspace
associated with a higher order basis. The interpolated solution then serves as the solution to
the preconditioning equation. Using this preconditioner in a JD type of algorithm allows us to



compute 8 eigenpairs of the H60VG3 accelerator model in 420 minutes on 128 IBM SP CPUs
maintained at NERSC. The H60VG3 model has 93 million degrees of freedom. The total amount
of memory used in this calculation is 704 GB, which is significantly less than the 2.5 TB memory
that would be required to carry out a shift-invert Lanczos iteration.

2.4. Multi-level and Algebraic Sub-structuring

There has been some progress in developing effective multi-level methods for large-scale
eigenvalue calculations since the late 70’s [1, 19]. However, most of these algorithms were
designed to compute a single eigenpair, and their applicability beyond elliptic problems requires
further investigation.

Some recent work [35, 2] has been done on combining a multi-grid solver with the JD,
LOBPCG and shift-invert Lanczos algorithms to compute the interior eigenvalues of an elliptic
differential operator. Strictly speaking, these approaches are not multi-level eigensolvers because
the multi-grid solver used for the inner iteration simply serves as a preconditioner.

Another multi-level technique that has recently gained a lot of attention is the Algebraic
Multi-level Sub-structuring (AMLS) method originally developed by Bennighof in the context
of vibrational analysis in structure engineering [4]. The method is a multi-level extension of the
component mode synthesis (CMS) [6] method developed in the 60’s. It is based on a domain
decomposition concept, i.e., instead of solving an eigenvalue problem on the entire computational
domain (structure), one reduces a large-scale problem to a set of smaller problems defined
on several sub-domains (sub-structures). The solutions to these smaller problems are used to
construct a subspace from which approximation to the eigenpairs of the original problem is
drawn. Because solving problems on each sub-structure requires far less computational power,
sub-structuring can lead to a significant reduction in the computational time required in a
large-scale engineering simulation for complex structures.

Instead of relying on a geometric partitioning of the computational domain, sub-structuring
can be done in a purely algebraic fashion by making use of matrix partitioning techniques such
as the nested dissection (ND) algorithm. For a generalized eigenvalue problem (2), a single-level
ND partition yields

K =





n1 n2 n3

n1 K11 K13

n2 K22 K23

n3 KT
13 KT

23 K33



 and M =





n1 n2 n3

n1 M11 M13

n2 M22 M23

n3 MT
13 MT

23 M33



, (9)

where the labels n1, n2 and n3 denote the dimensions of each sub-matrix block. The pencils
(K11,M11) and (K22,M22) now define two algebraic sub-structures that are connected by the
third block rows and columns of K and M which we will refer to as the interface block. In AMLS,
a congruence transformation is applied to (K,M) to turn K into a block diagonal matrix. The
transformation results in the modification of the third block rows and columns of K and M . In
particular, it turns K33 into K̂33 and M33 into M̂33. The approximation to the eigenpairs of the
original problem are then extracted from the subspace

S =





k1 k2 n3

n1 S1

n2 S2

n3 S3



 (10)

where S1 and S2 consist of k1 and k2 selected eigenvectors of (K11,M11) and (K22,M22)

respectively, and S3 consists of a subset of the eigenvectors of (K̂33, M̂33).



One of the key decisions one has to make in AMLS is the number of eigenpairs to compute
on each sub-structure (and to include in Si, i = 1, 2, 3). These eigenpairs are referred to as sub-
structure modes. Selecting too many modes increases the size of the final projected problem,
and consequently the cost of the overall computation. Limiting the the selection to too few
modes can result in a lack of accuracy in the final approximation to the original problem.

An error analysis for a single-level algebraic sub-structuring is carried out in [34]. The
analysis measures the the contribution of each sub-structure mode to the final approximation
of the desired eigenvector. An error bound for the approximation to the smallest eigenvalue
is established. The error bound is expressed in terms of the cumulative contribution of the
sub-structure modes that are excluded from the approximation eigenvector.

It is observed in [34] that, for many problems (including the ones arising from the SciDAC
accelerator modeling), most of the sub-structure modes do not make a significant contribution
to the approximation of the desired eigenvector. Hence they do not need to be computed or
included in S. A heuristic is developed in [34] for choosing sub-structuring modes based on the
desired accuracy of the approximate eigenvector. This heuristic is justified independently in [8].

The AMLS algorithm has been used successfully in structure analysis applications. The
timing results reported in [13, 17] indicate that AMLS is significantly faster than conventional
Lanczos-based approaches [18, 10]. However, our recent performance evaluation of the algorithm
indicate that the performance of the algorithm depends on a number of factors such as the
number of partitioning levels, the number of modes selected from each substructure, the choice
of method for solving the final projected problem [9]. Because performing a congruence
transformation is almost as expensive as factoring K − σM , AMLS is not the most efficient
method to use when only a few eigenpairs are needed. However, because AMLS does not carry
out basis orthogonalization or solve any triangular systems, it is attractive when a large number
of eigenvalues are needed.

A sequential version of the AMLS algorithm has been developed and used in the SciDAC
accelerator project. The implementation has the capability to deflate the null space in the
sub-structuring calculation.

2.5. Non-linear Eigenvalue Problems

Although significant progress has been made in solving large-scale linear eigenvalue problems of
the form (1) and (2), there is an increasing need for developing efficient algorithms for solving
non-linear eigenvalue problems.

A nonlinear eigenvalue problem arises in the SciDAC accelerator modeling project when one
takes into account the external coupling of waveguides with an open cavity. In this case, one
must determine the wave function x that satisfies

Kx + i
√

k2 − k2
cWx = k2Mx, (11)

where k is an unknown cavity resonant frequency, K is the stiffness matrix, M is the mass matrix,
W is a known damping matrix and kc is a fixed reference frequency. If we let λ =

√
k2 − k2

c ,
then (11) can be formulated as a quadratic eigenvalue problem (QEP)

λ2Mx − iλWx + (k2
cM − K)x = 0. (12)

The standard approach for solving (12) is to linearize it first. The linearization would produce
a generalized (linear) eigenvalue problem twice as large in dimension. The larger linear eigenvalue
can then be solved by using, for example, a KSM method.

In a recent paper [3], Bai and Su proposed a second order Arnoldi (SOAR) algorithm for
solving a quadratic eigenvalue problem without linearization. The new algorithm constructs a
second order Krylov subspace in terms of A = iM−1W and B = M−1K − k2

cI [3]. Because



the algorithm projects the quadratic eigenvalue problem directly into the second order Krylov
subspace, it has the advantage of preserving all the essential structure and properties of the
QEP.

SOAR has been used successfully in computing the cavity modes of a 9-cell superconducting
model (which is part of the international linear collider project) coupled with one external
input. The dimension of the discretized model is n = 3.2 × 106 in this case. Using 768 IBM SP
processors, the SOAR computation takes less than an hour. This is much faster than applying
an Arnoldi iteration to the linearized problem. The computed eigenvalues are more accurate
than those obtained in the Arnoldi iteration also.

A more difficult nonlinear eigenvalue problem arises in electronic structure calculation which
is part of the SciDAC nanoscience project. One of the major problems in electronic structure
calculation is to minimize the Kohn-Sham (KS) total energy functional associated with an
atomistic system with respect to its electron orbitals. Once discretized, the total energy can be
expressed by

Etotal(X) = Ekinetic(X) + Eion(X) + EH(X) + EXC(X),

where X = (x1, x2, ..., xk) represent a set of electron wavefunctions corresponding to k occupied
states, and Ekinetic, Eion, EH and EXC represent contributions from the kinetic energy, the
ionic, Hartree and exchange-correlation potentials.

The total energy must be minimized under the orthonormality constraint XT X = Ik. The
Karush-Kuhn-Tucker (KKT) condition for the constrained optimization problem yields the
following nonlinear eigenvalue problem

H(X)X = XΛk, XT X = Ik, (13)

where the H(X) is the Kohn-Sham Hamiltonian that depends on X.
Currently, the most widely used algorithm for solving this energy minimization problem is the

so-called Self Consistent Field (SCF) iteration algorithm. The algorithm is essentially a fixed
point iterative scheme applied to the Kohn-Sham equation (13). Given an initial guess of X, say
X(0), one forms the discrete Hamiltonian H(X(0)) and computes eigenvectors (X(1)) associated
with the k smallest eigenvalues of H(X0). If the difference between H(X(i)) and H(X(i+1))
remains large, the eigenvectors associated with the k smallest eigenvalues of H(X(i+1)) are
computed, and this process continues until the difference between H(X(i)) and H(X(i+1))
becomes negligibly small. When SCF converges, X(i) consists of a set of wave functions that
are self-consistent with respect to the KS equation (13).

Although SCF is widely used, its convergence property is still poorly understood. It is well
known that SCF iterations often fail to converge. Several techniques such as the Direct Inversion
of Iterative Subspace (DIIS) [23] and charge mixing [16] have been developed to prevent the SCF
iteration from diverging. However, these techniques are not well understood either. Although
they help in many cases, they can still fail.

A constrained minimization algorithm has recently been developed to minimize the total
energy directly [36]. This method is an extension of the LOBPCG algorithm for solving a linear
eigenvalue problem. It differs from some of the earlier attempts to minimize the total energy
[22, 31] in the way the search direction and step length are chosen. The new algorithm essentially
reduces a large constrained minimization problem to a sequence of much smaller constrained
minimization problem. Such a reduction allows one to exploit more sophisticated optimization
algorithms for finding solutions to the nonlinear eigenvalue problem. Furthermore, it eliminates
the need to solve a sequence of large-scale linear eigenvalue problem in the SCF iteration.

Preliminary results reported in [36] show that the direct constrained minimization is more
effective than SCF on a simple test problem. However, more extensive tests are required to
assess the convergence behavior of the algorithm for larger atomistic systems. The key to make



this algorithm more efficient and robust is to identify the best scheme for solving the reduced
minimization problem. This remains to be a research problem.

3. Concluding Remarks

As part of the SciDAC Tera-scale PDE Simulation (TOPS) and nano-science projects, we have
been working with other SciDAC application centers on developing and deploying efficient
and reliable algorithms for solving large-scale eigenvalue problems in SciDAC applications.
While Krylov subspace methods (KSM) remain the most reliable and effective tool for solving
linear eigenvalue problems, it has some limitations. In particular, it is not easy to make the
best use of preconditioners in KSM. This limitation requires us to explore other alternatives.
Although preliminary studies indicate that multi-level algebraic sub-structuring techniques can
be extremely helpful in speeding up the calculation of a large number of eigenpairs, further
studies are required to improve the accuracy of this approach. Significant progress has been
made on the development of efficient and structure preserving algorithms for solving quadratic
eigenvalue problems. However, much more needs to be done in the development of reliable and
efficient algorithms for solving non-linear eigenvalue problems arising from electronic structure
calculation.
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