
SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

National Energy Research
Scientific Computing Center
(NERSC)

Batch queue Shoot Out

Thomas Davis & Jason Gabler
NERSC Center Division, LBNL
November, 2003

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Introduction

● Taking the NERSC workload to Linux
based clusters.

● A look at Batch Queue systems
● Try to level the playing field by using the

same hardware and software.
● Used to build relationships with vendors

for future procurements.
● Bring ESP to vendors attention.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Testing Resources

● Alvarez Cluster
● RedHat 7.3/xCAT/PGI software
● Myricom 2000 interconnect
● Has 87 computes nodes, 2 storage nodes, 2

interactive nodes, and 1 management node
● ESP2

● A benchmark based on simulation of
NERSC's workload.

● http://www.nersc.gov/aboutnersc/esp.html

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

ESP2 Overview

● Used to measure efficiency, stability,
and scalability of a system
● Making a system more efficient can have

the effect of adding additional raw
performance.

● Based on simulating NERSC's workload.
● Generates a single metric for evaluation

of systems.
● Used for procurements of systems by

other labs (ie, ASCI Purple)

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

ESP Design Goals & Attributes

● Transferable metric(s) / Valid comparisons
● Reproducible
● Easily interpreted results
● Portable
● Platform size and speed independent
● Capture essence of real workload
● Compact and easily distributed
● Easy to run (< 12 hours)
● Automated / no human intervention
● Focus on utilization / factor out CPU speed
● Test responsiveness & adaptability of scheduler

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

ESP Utilization Metric

pitii
P(T+S)

E =

pi = partition size ti = elapsed time

T = measured test time S = shutdown time

P = total # procs

Independent of CPU speed
E approaches unity (1) for perfect packing

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

ESP Test Schematic

time <12 hours

full config #1 full config #2

regular jobs
regular jobs

>10% >10%

regular jobs regular jobsshutdown/
reboot (opt)

regular jobs
Vanilla variant
(throughput)

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

ESP pchksum

● Program used to create workload on
nodes.
● Passes a token around using MPI, and

calculates a running CRC value
● Can identify hardware/software problems

● Same program scales from a single node to
N nodes, where N = full system PE count.

● Run time is based on number of passes or
wall clock time.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Jobmix

%jobdesc = (
#
Job Size Count WallclockLimit Queue run­time priority
­­
#
 A => [0.03125, 75, "1:00:00", "special", 257, 10],
 B => [0.06250, 9, "1:00:00", "special", 341, 10],
 C => [0.50000, 3, "1:00:00", "special", 536, 10],
 D => [0.25000, 3, "1:00:00", "special", 601, 10],
 E => [0.50000, 3, "1:00:00", "special", 312, 10],
 F => [0.06250, 9, "1:00:00", "special", 1846, 10],
 G => [0.12500, 6, "1:00:00", "special", 1321, 10],
 H => [0.15820, 6, "1:00:00", "special", 1078, 10],
 I => [0.03125, 24, "1:00:00", "special", 1438, 10],
 J => [0.06250, 24, "1:00:00", "special", 715, 10],
 K => [0.09570, 15, "1:00:00", "special", 495, 10],
 L => [0.12500, 36, "1:00:00", "special", 369, 10],
 M => [0.25000, 15, "1:00:00", "special", 192, 10],
 Z => [1.00000, 2, "3:20", "system", 100, 50],
);

Total of 230 jobs; 228 jobs equal to or smaller than 50% of system PE's,
2 jobs ('Z' class, full config) that use 100% of the system PE's.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

ESP jobs

● A zjob is a full system configuration job
● Required to run next. No other job may be

started until after the zjob has completed.
● Any method can be used to fufill this

requirement.
● We selected scheduler tuning and priorities to

attain this.

● This is done twice in a single ESP run
● 1st submission at 40 minutes, 2nd submission

at 120 minutes.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Example of LSF 64-way ESP w/zjob
Effective System Performance: 83.68%

First zjob submitted Second zjob submitted

Job & ESP test completion

Total jobs running

Nodes in use

Queued Job count

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

IBM SP/Seaborg

● Loadleveler on the SP
● Difficult to compare, due to difference in

size.
● the SP is capable of 4096 CPU jobs
● Alvarez's max is 174 CPU's.

● Does have same characteristics, ie, no
checkpoint/restart, scheduler tuning
problems.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

How we used ESP2

● All jobs are allowed to run to completion.
● No swapping, no suspend, no checkpoint/restart,

no process migration used.
● No sharing of nodes between jobs allowed.
● Not all the nodes are used for the testing.

● Testing only used 64 of 87 compute nodes.
● Job information kept separate and merged after run.
● No shutdown/reboot of system
● Use of 1 CPU per node.
● 1st zjob at 40 minutes, 2nd zjob at 2 hour mark.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Initial Candidates

● Wisconsin's Condor
● LLNL's SLURM
● MHPCC & MauiME
● Sun SGE (Sun Grid Engine)
● Platform's LSF (Load Sharing Facility)
● FNAL's FBSNG (Farms Batch System

Next Generation
● OpenPBS/PBSPro

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Feature Comparison
OpenPBS LSF Molokini SGE Condor

1.1 Backfill X X X - -
1.2 Backfill "end time" designation X X - - -
1.3 Preemption X X - X
1.4 Gang Scheduling - - - - -
1.5 Sessions - - - - -
1.6 Scheduler has ultimate control of processes - X - ? X
1.7 Migrate Jobs and Processes - X - X
1.8 Advanced Reservation X X X - ?
1.9 Resource Dedication X X X - ?
1.10 Queue complexes X X - X -
1.11 Control queues on a per node basis - - - ? -
1.12 Suspend and resume jobs X X - X X
1.13 Configurable Resource Definitions X X X X -
1.14 Parallel job support X X X X
1.15 Pluggable Scheduler X - X - -
1.16 Linux and Sun support X X X X X
1.17 Checkpoint/Restart X (SGI, Cray) X X X
2.1 Ability to force a job to run outside of prioritization X X X X -
2.2 "No-preemption" marking for jobs and queues - - - - -
2.3 Ability to define and enforce limits X X X X Loosely
2.4 Highly detailed logs - X X ? -
2.5 Set queues to be empty at a certain time - X/- X - -
2.6 Extensive API - X X ? -
2.7 Override system configuration with node specific configurations - X X X -
2.8 Custom job prioritization X X X ? X
2.9 Fair Share Scheduling X X - X X
2.10 Open Source - - X X X
2.11 Low cost X - X X X
2.12 Robust and Fault Recoverable - X X ? -
3.1 Ability to run MPI jobs from the command line X X - ? -
3.2 Useful, verbose debugging info when a job fails - X X X X

-5

-6

X1

-6

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Final Candidates

● Selection of 4 batch systems for testing
● MauiME - Java based, portable, freely

downloadable.
● Sun Grid Engine - Freely downloadable.
● Platform's LSF - Used on the PDSF cluster,

already had a relationship with Platform.
● OpenPBS w/Maui scheduler - Already

installed on Alvarez, used as a base line to
get ESP2 working. Freely downloadable.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

MauiME

● MauiME was difficult to compile, install and use.
● Java wasn't portable.

● You had to have the correct version to build and run
the system.

● Had to work with the developers to get running.

● Once running, MauiME did not meet the ESP
requirements.

● Could not set job priority upon job submission.
● It will always share a node - no way to dedicate a node

to a job.

● Little or no documentation

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

SGE

● Worked well on initial throughput runs
● Had problems with ESP's zjob

submission and run requirements.
● SGE always wanted to run the zjob's last.

● Scheduler classified jobs by size, then applied
priorities

● Worked with Maui scheduler people to attempt to
replace SGE's scheduler with Maui.

– Initial tests failed due to pre-alpha status

» Needed CVS versions of SGE and Maui to even
compile

» System was “delicate” and easy to crash.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

LSF

● Started with LSF 5.0
● Had to tune system to properly run ESP

● Had to set SLOT_RESERVE =
MAX_RESERVE_TIME[6000] to make large jobs
run.

● LSF Support created a scheduler as “proof of
concept” for pluggable scheduler in v5.0

● Simple, “run large jobs first” scheduler.

● Updated to LSF 5.1
● Did a run using LSF scheduler plug-in and

Maui scheduler

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

OpenPBS w/Maui scheduler

● Ran ESP with no modifications.
● Found that scheduler interval

determined efficiency.
● Ie, schedule more often, leaves less dead

time; but maui scheduler racks up more
CPU time/memory usage.

● Node problems could stop or slow
scheduling.

● OpenPBS on Alvarez has had problems
in the past

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Numeric Results

64 PE PBS LSF LSF w/mod LSF w/maui SGE MauiME
Throughput 83.68 75.33 78.57 79.5 N/A Failed

Zjob 77.49 65 73.35 73.66 Failed Failed

128 PE PBS LSF
Throughput 83.47 74.83

Zjob 78.01 64.28

• A zjob is a throughput run with a full system configuration job
submitted at 40 minutes and 120 minutes, which MUST be ran
ASAP.
• Numbers are scaled by 100.
• We tried 128PE jobs using LSF and PBS to try and identify
scaling problems.
•A throughput value for SGE was not calculated.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

64-way ESP w/z-job
OpenPBS w/Maui vs LSF w/Maui

LSF: 15451 seconds (4hrs, 17mins, 31 secs)
PBS: 14672 seconds (4hrs, 4 mins, 32 secs)
Difference: 12:59 minutes

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

PBS vs LSF w/Maui 64-way ESP w/z-job

LSF: 15451 seconds (4hrs, 17mins, 31 secs)
PBS: 14672 seconds (4hrs, 4 mins, 32 secs)
Difference: 12:59 minutes

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

LSF vs LSF w/schmod vs LSF w/Maui
Running jobs count

LSF: 17466 secs (4 hrs, 50 mins, 55 secs)
LSF w/schedmod: 15500 secs (4 hrs, 18 mins, 20 secs)
LSF w/Maui: 15451 secs (4hrs, 17 mins, 31 secs)

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Summary - Alvarez

● Alvarez is too small to test
scheduling scalability and stability.
● Need more nodes.

● There are still some variables to look
at.
● Scheduler interval is a big variable.
● SMP node scheduling.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Summary - ESP

● ESP benchmark
● Re-wrote to be more modular

● Added support for Linux
● Add support for MauiME, SGE, LSF, and

OpenPBS.
● Changed job creation script to be table

driven.
● Scripts to automate the Linux runs created.
● The test requirements exposed areas of

concern in MauiME, SGE, and LSF.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Summary

● MauiME
● Could not meet the ESP test requirements.

● SGE
● Could not meet the ESP test requirements.

● Platform's LSF
● Did meet the ESP test requirements in 3

different configurations.
● OpenPBS w/Maui scheduler

● Did meet the ESP test requirements.

SC-Banner-small-cm
yk
SC-Banner-small-cm
yk

Future Directions

● SGE w/Maui scheduler
● More scalability and stability testing

● Look at User Mode Linux to increase
node count.

● Ability to create synthetic node failures.
● Variations in node speed.

● Find a large cluster to do more testing.
● PBSPro vs. OpenPBS vs.

ScalablePBS
● LSF w/checkpoint/restart

