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Berkeley Lab researchers have developed an auto-tuning approach to optimize application 
performance on emerging multicore architectures. On one of the broadest sets of multicore 
architectures in the high performance computing literature, they applied this strategy to a lattice 
Boltzmann application (LBMHD). Their auto-tuned LBMHD achieved up to 14 times faster 
performance than the original code. They concluded that auto-tuning will be an important tool for 
ensuring that numerical simulation codes will perform well on future multicore computers. 
 
At the 2008 IEEE International Parallel and 
Distributed Processing Symposium (IPDPS), the 
award for Best Paper in the applications category 
went to a research paper exploring ways to make a 
popular scientific analysis code run smoothly on 
different types of multicore computers. 
 
Samuel Williams, a researcher from Berkeley Lab’s 
Computational Research Division (CRD), was lead 
author of the award-winning paper, titled “Lattice 
Boltzmann simulation optimization on leading 
multicore platforms.” Williams and his collaborators 
chose to focus on lattice Bolzmann code as a way to 
explore a broader issue: how to make the best use of 
multicore supercomputers. 
 
The multicore trend in supercomputing started only 
recently, and the computing industry is expected to 
add more cores per chip to boost performance in the 
future. Unfortunately the trend is taking flight 
without an equally concerted effort by software 
developers, says Williams. In the winning paper he 
writes, “The computing revolution towards massive 
on-chip parallelism is moving forward with relatively 
little concrete evidence on how to best to use these 
technologies for real applications.” 
 
Williams and his colleagues settled on the lattice 
Bolzmann code that is used to model turbulence in 
magnetohydrodynamics simulations, which play a 
key role in several areas of physics research, from 
star formation to magnetic fusion devices (Fig. 1). 
The code, LBMHD (LB for lattice Boltzmann, MHD 
for magnetohydrodymanics), typically performs 
poorly due to its complex data structures and memory 
access patterns. In their paper, the researchers 
describe how they developed a code generator that 
could efficiently and productively optimize a lattice  
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Fig. 1. (a) The 27 streaming directions of the D3Q27 
lattice and (b) vorticity tubes deforming near the 
onset of turbulence in one of the largest 3D LBMHD 
simulations conducted to date, aiming to understand 
better the turbulent decay mechanisms starting from 
a Taylor-Green vortex — a problem of relevance to 
astrophysical dynamos. The figure shows the 
development of turbulent structures in the z-direction 
as the initially linear vorticity tubes deform. (From J. 
Cater et al., “Magnetohydrodynamic turbulence 
simulations on the Earth Simulator using the lattice 
Boltzmann method,” in Proc. SC2005.) 
 
 
Bolzmann code to deliver better performance on a 
new breed of supercomputers built with multicore 
processors. 
 
The optimization research performed by the authors 
resulted in a great improvement to LBMHD code 
performance—substantially higher than any 
published to date. The researchers also gained insight 
into building effective multicore applications, 
compilers, and other tools. 
 
The authors determined how well the code runs on 
several processors used to build computers today: 
Intel’s quad-core Clovertown, Advanced Micro  



 

 

 
Fig. 2. Comparison of (a) runtime performance and (b) power efficiency across all studied architectures for the 643 
problem. 
 
Devices’ dual-core Opteron X2, Sun Microsystems’ 
eight-core Niagara 2, and the eight-core STI Cell 
blade (designed by Sony, Toshiba, and IBM). They 
also looked at Intel’s single-core Itanium 2, to 
compare its more complex single-core design with 
other, simpler multicores. 
 
Williams and his fellow researchers first looked at 
why the original LBMHD performs poorly on these 
multicore systems. They found that, contrary to 
conventional wisdom, memory-bus bandwidth did 
not present the biggest obstacle. Instead, lack of 
resources for mapping virtual memory pages, 
insufficient cache bandwidth, high memory latency, 
and/or poor functional unit scheduling did more to 
hamper the code’s performance. 
 
Rather than hand-tuning LBMHD for each system, 
the researchers developed a code generator that 
creates a highly optimized version for each multicore 
architecture. This auto-tuning approach produces 
multiple versions of the computational kernels using 
a set of optimizations with varying parameter 
settings. The optimization efforts included loop 
restructuring, code reordering, software prefetching, 
and explicit “SIMDization” (single-instruction, 
multiple-data vectorization).  
 
Their results showed a wide range of performances 
on different processors (Fig. 2) and pointed to 
bottlenecks in the hardware that prevented the code 
from running well. The optimization efforts also 
resulted in a huge gain in performance—the 
optimized code ran up to 14 times faster than the 
original version. It also achieved sustained 
performance for this code higher than any published 
to date: on two of the processor architectures, over 50 
percent of peak flops (floating point operations per 
second). 
 

Compared with other processors, the Cell processor 
provided the highest raw performance and power 
efficiency for LBMHD. This processor’s design calls 
for direct software control of the data movement 
between on-chip and main memory, resulting in the 
impressive performance. Overall, the researchers 
concluded, processor designs that focused on high 
throughput using sustainable memory bandwidth and 
a large number of simple cores perform better than 
processors with complex cores that emphasized 
sequential performance. 
 
They also concluded that auto-tuning will be an 
important tool for ensuring that numerical simulation 
codes will perform well on future multicore 
computers. 
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