
ASCR Accomplishments 2001–2008

 Advanced Scientific
Computing Research

Code Optimization on Multicore Platforms through Auto-Tuning (2008)
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine Yelick,

Lawrence Berkeley National Laboratory

Berkeley Lab researchers have developed an auto-tuning approach to optimize application
performance on emerging multicore architectures. On one of the broadest sets of multicore
architectures in the high performance computing literature, they applied this strategy to a lattice
Boltzmann application (LBMHD). Their auto-tuned LBMHD achieved up to 14 times faster
performance than the original code. They concluded that auto-tuning will be an important tool for
ensuring that numerical simulation codes will perform well on future multicore computers.

At the 2008 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), the
award for Best Paper in the applications category
went to a research paper exploring ways to make a
popular scientific analysis code run smoothly on
different types of multicore computers.

Samuel Williams, a researcher from Berkeley Lab’s
Computational Research Division (CRD), was lead
author of the award-winning paper, titled “Lattice
Boltzmann simulation optimization on leading
multicore platforms.” Williams and his collaborators
chose to focus on lattice Bolzmann code as a way to
explore a broader issue: how to make the best use of
multicore supercomputers.

The multicore trend in supercomputing started only
recently, and the computing industry is expected to
add more cores per chip to boost performance in the
future. Unfortunately the trend is taking flight
without an equally concerted effort by software
developers, says Williams. In the winning paper he
writes, “The computing revolution towards massive
on-chip parallelism is moving forward with relatively
little concrete evidence on how to best to use these
technologies for real applications.”

Williams and his colleagues settled on the lattice
Bolzmann code that is used to model turbulence in
magnetohydrodynamics simulations, which play a
key role in several areas of physics research, from
star formation to magnetic fusion devices (Fig. 1).
The code, LBMHD (LB for lattice Boltzmann, MHD
for magnetohydrodymanics), typically performs
poorly due to its complex data structures and memory
access patterns. In their paper, the researchers
describe how they developed a code generator that
could efficiently and productively optimize a lattice

(a)

(b)

Fig. 1. (a) The 27 streaming directions of the D3Q27
lattice and (b) vorticity tubes deforming near the
onset of turbulence in one of the largest 3D LBMHD
simulations conducted to date, aiming to understand
better the turbulent decay mechanisms starting from
a Taylor-Green vortex — a problem of relevance to
astrophysical dynamos. The figure shows the
development of turbulent structures in the z-direction
as the initially linear vorticity tubes deform. (From J.
Cater et al., “Magnetohydrodynamic turbulence
simulations on the Earth Simulator using the lattice
Boltzmann method,” in Proc. SC2005.)

Bolzmann code to deliver better performance on a
new breed of supercomputers built with multicore
processors.

The optimization research performed by the authors
resulted in a great improvement to LBMHD code
performance—substantially higher than any
published to date. The researchers also gained insight
into building effective multicore applications,
compilers, and other tools.

The authors determined how well the code runs on
several processors used to build computers today:
Intel’s quad-core Clovertown, Advanced Micro

Fig. 2. Comparison of (a) runtime performance and (b) power efficiency across all studied architectures for the 643
problem.

Devices’ dual-core Opteron X2, Sun Microsystems’
eight-core Niagara 2, and the eight-core STI Cell
blade (designed by Sony, Toshiba, and IBM). They
also looked at Intel’s single-core Itanium 2, to
compare its more complex single-core design with
other, simpler multicores.

Williams and his fellow researchers first looked at
why the original LBMHD performs poorly on these
multicore systems. They found that, contrary to
conventional wisdom, memory-bus bandwidth did
not present the biggest obstacle. Instead, lack of
resources for mapping virtual memory pages,
insufficient cache bandwidth, high memory latency,
and/or poor functional unit scheduling did more to
hamper the code’s performance.

Rather than hand-tuning LBMHD for each system,
the researchers developed a code generator that
creates a highly optimized version for each multicore
architecture. This auto-tuning approach produces
multiple versions of the computational kernels using
a set of optimizations with varying parameter
settings. The optimization efforts included loop
restructuring, code reordering, software prefetching,
and explicit “SIMDization” (single-instruction,
multiple-data vectorization).

Their results showed a wide range of performances
on different processors (Fig. 2) and pointed to
bottlenecks in the hardware that prevented the code
from running well. The optimization efforts also
resulted in a huge gain in performance—the
optimized code ran up to 14 times faster than the
original version. It also achieved sustained
performance for this code higher than any published
to date: on two of the processor architectures, over 50
percent of peak flops (floating point operations per
second).

Compared with other processors, the Cell processor
provided the highest raw performance and power
efficiency for LBMHD. This processor’s design calls
for direct software control of the data movement
between on-chip and main memory, resulting in the
impressive performance. Overall, the researchers
concluded, processor designs that focused on high
throughput using sustainable memory bandwidth and
a large number of simple cores perform better than
processors with complex cores that emphasized
sequential performance.

They also concluded that auto-tuning will be an
important tool for ensuring that numerical simulation
codes will perform well on future multicore
computers.

Publications:

Samuel Williams, Jonathan Carter, Leonid Oliker,
John Shalf, and Katherine Yelick, “Lattice
Boltzmann simulation optimization on leading
multicore platforms,” in Proceedings of IPDPS 2008;
http://crd.lbl.gov/~oliker/papers/ipdps08_final.pdf.

Funding:

DOE Office of Advanced Scientific Computing
Research.

