ASCR Accomplishments
2001–2008


	[image: image1.png]
	Advanced Scientific
Computing Research
	[image: image5.jpg]


Code Optimization on Multicore Platforms through Auto-Tuning (2008)
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine Yelick, Lawrence Berkeley National Laboratory
Berkeley Lab researchers have developed an auto-tuning approach to optimize application performance on emerging multicore architectures. On one of the broadest sets of multicore architectures in the high performance computing literature, they applied this strategy to a lattice Boltzmann application (LBMHD). Their auto-tuned LBMHD achieved up to 14 times faster performance than the original code. They concluded that auto-tuning will be an important tool for ensuring that numerical simulation codes will perform well on future multicore computers.
At the 2008 IEEE International Parallel and Distributed Processing Symposium (IPDPS), the award for Best Paper in the applications category went to a research paper exploring ways to make a popular scientific analysis code run smoothly on different types of multicore computers.

Samuel Williams, a researcher from Berkeley Lab’s Computational Research Division (CRD), was lead author of the award-winning paper, titled “Lattice Boltzmann simulation optimization on leading multicore platforms.” Williams and his collaborators chose to focus on lattice Bolzmann code as a way to explore a broader issue: how to make the best use of multicore supercomputers.

The multicore trend in supercomputing started only recently, and the computing industry is expected to add more cores per chip to boost performance in the future. Unfortunately the trend is taking flight without an equally concerted effort by software developers, says Williams. In the winning paper he writes, “The computing revolution towards massive on-chip parallelism is moving forward with relatively little concrete evidence on how to best to use these technologies for real applications.”

Williams and his colleagues settled on the lattice Bolzmann code that is used to model turbulence in magnetohydrodynamics simulations, which play a key role in several areas of physics research, from star formation to magnetic fusion devices (Fig. 1). The code, LBMHD (LB for lattice Boltzmann, MHD for magnetohydrodymanics), typically performs poorly due to its complex data structures and memory access patterns. In their paper, the researchers describe how they developed a code generator that could efficiently and productively optimize a lattice 
	(a)

[image: image2.emf]
	(b)
[image: image3.emf]

	Fig. 1. (a) The 27 streaming directions of the D3Q27 lattice and (b) vorticity tubes deforming near the onset of turbulence in one of the largest 3D LBMHD simulations conducted to date, aiming to understand better the turbulent decay mechanisms starting from a Taylor-Green vortex — a problem of relevance to astrophysical dynamos. The figure shows the development of turbulent structures in the z-direction as the initially linear vorticity tubes deform. (From J. Cater et al., “Magnetohydrodynamic turbulence simulations on the Earth Simulator using the lattice Boltzmann method,” in Proc. SC2005.)


Bolzmann code to deliver better performance on a new breed of supercomputers built with multicore processors.

The optimization research performed by the authors resulted in a great improvement to LBMHD code performance—substantially higher than any published to date. The researchers also gained insight into building effective multicore applications, compilers, and other tools.

The authors determined how well the code runs on several processors used to build computers today: Intel’s quad-core Clovertown, Advanced Micro 
[image: image4.emf]
Fig. 2. Comparison of (a) runtime performance and (b) power efficiency across all studied architectures for the 643 problem.

Devices’ dual-core Opteron X2, Sun Microsystems’ eight-core Niagara 2, and the eight-core STI Cell blade (designed by Sony, Toshiba, and IBM). They also looked at Intel’s single-core Itanium 2, to compare its more complex single-core design with other, simpler multicores.

Williams and his fellow researchers first looked at why the original LBMHD performs poorly on these multicore systems. They found that, contrary to conventional wisdom, memory-bus bandwidth did not present the biggest obstacle. Instead, lack of resources for mapping virtual memory pages, insufficient cache bandwidth, high memory latency, and/or poor functional unit scheduling did more to hamper the code’s performance.

Rather than hand-tuning LBMHD for each system, the researchers developed a code generator that creates a highly optimized version for each multicore architecture. This auto-tuning approach produces multiple versions of the computational kernels using a set of optimizations with varying parameter settings. The optimization efforts included loop restructuring, code reordering, software prefetching, and explicit “SIMDization” (single-instruction, multiple-data vectorization). 
Their results showed a wide range of performances on different processors (Fig. 2) and pointed to bottlenecks in the hardware that prevented the code from running well. The optimization efforts also resulted in a huge gain in performance—the optimized code ran up to 14 times faster than the original version. It also achieved sustained performance for this code higher than any published to date: on two of the processor architectures, over 50 percent of peak flops (floating point operations per second).

Compared with other processors, the Cell processor provided the highest raw performance and power efficiency for LBMHD. This processor’s design calls for direct software control of the data movement between on-chip and main memory, resulting in the impressive performance. Overall, the researchers concluded, processor designs that focused on high throughput using sustainable memory bandwidth and a large number of simple cores perform better than processors with complex cores that emphasized sequential performance.

They also concluded that auto-tuning will be an important tool for ensuring that numerical simulation codes will perform well on future multicore computers.

Publications:

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine Yelick, “Lattice Boltzmann simulation optimization on leading multicore platforms,” in Proceedings of IPDPS 2008; http://crd.lbl.gov/~oliker/papers/ipdps08_final.pdf.

Funding:
DOE Office of Advanced Scientific Computing Research.
